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1.0     INTRODUCTION 

This report describes the first year of work conducted under this project, between 13 June 2000 
and 12 June 2001. The organization of the report is as follows: 

1. Aims 
2. Findings of the Investigator during Y1 
3. Comparison of Accomplishments with Goals 
4. Chronological list of written publications 
5. List of professional personnel associated with the project. 
6. Related Activities: Meetings/Conferences 
7. Related Activities: Discoveries and Inventions 
8. Other Grants Related to F33615-00-2-6059 
9. Appendixes 

2.0     AIMS 

Broadly, the purpose of this project is to explore the idea of using simple optical elements to do 
the job of more complex and costly spectroscopic hardware in measuring chemical 
concentrations and determining chemical composition via optical spectroscopy. Work of this 
type is called multivariate optical computing, a name given it in a 1998 publication in the journal 
Analytical Chemistry. 

The underlying theme of this work is that the spectroscopic patterns that provide meaningful 
chemical information in complex systems can be encoded into the spectrum of a simple optical 
interference filter. To ascertain whether this is feasible, and if feasible then under what 
conditions and with what certainty, this project explores the basic theory of multivariate optical 
computing as well as the materials, algorithms and systems used for bringing the concept to life. 

In pursuit of this aim, the USC research team undertook a wide variety of investigations. Among 
these were development of design algorithms, measurements of optical spectra of samples in 
transmittance, diffuse reflectance and grazing angle specular reflectance, process control 
algorithms, theoretical analysis of the limitations of our ability to fabricate optics, spectral 
radiometry of detectors and light sources, construction of prototype systems, construction of 
imaging systems, measurements of the optical constants of materials used in fabrication, 
literature searches and reviews, plus measurements of organic materials, thin films and other 
processes for making defined interference layers. The following report describes some of the 
salient features of the work during Year 1. 



3.0 FINDINGS OF THE INVESTIGATOR DURING YEAR 1 

3.1 SYNTHESIS   OF   MULTIVARIATE OPTICAL   ELEMENTS   FOR   POINT 
.   MEASUREMENTS 

A major focus of the USC research during Yl was to develop and improve tools for the design of 
multivariate optical elements (MOEs). All initial work (prior to the beginning of this program) 
was aimed at spectral matching algorithms (SMAs). SMAs are used to design MOEs by 
attempting to design a thin-film structure whose interference-governed spectrum matches a 
desired target spectrum. The "match quality" of the filter spectrum to the target spectrum was 
characterized by a figure of merit (FOM) that generally expresses the percent transmission 
difference between the two across a range of wavelengths. Target spectra were derived from 
chemometric interpretation of sample spectroscopy. SMAs are conceptually and practically 
identical to design methods for any type of tailored-spectrum optical interference filter, including 
the very sophisticated commercially-available packages used by thin-film designers at custom 
coating houses. While such algorithms have been well known, they are by no means easy to 
implement for general MOE design. There are serious problems, both conceptual and practical, 
relating to how well data noise should be included in the target spectrum, for example. In 
addition, relating the film thickness sensitivities for layers of a MOE to the chemical prediction 
quality desired for an MOE is by no means straightforward or simple. Thus it was recognized at 
the beginning of this project that SMAs are not ideal for MOE design. 

The USC team undertook software development for the synthesis of interference coatings based 
on a "standard error of prediction" figure of merit. This new design algorithm bypasses many of 
the problems associated with the old SMA approach by finding an optimal design for the MOE at 
each given level of MOE complexity. 

This work began with a written code that calculates the transmittance of a multilayer film as a 
function of angle, wavelength and optical constants, including absorbance. The second stage of 
the work was the incorporation of this algorithm into an optimization code. This optimization 
code at the moment uses a pseudo-Newton gradient descent algorithm to optimize the 
thicknesses of materials in a multilayer that is given it as a starting point. A number of 
permutations on this basic theme were tried. The USC team has thus far found that random 
starting positions for optimization are preferable to a SMA-derived starting point. The ultimate 
reason behind this remains essentially unknown; one possible explanation is that an SMA- 
derived starting point limits the available space that can be sampled easily during optimization. 
Random starting points have generally produced results that outperform SMA-initiated 
optimizations. 

The new algorithms have been the subject of both a manuscript (currently submitted) and a 
preliminary patent application. Both are appended to this report. 



3.2    MANUFACTURING TOLERANCES 

The question of how closely a fabricated filter has to match its objective, theoretical spectrum 
before its performance as an MOE degrades was addressed by the USC team. This question is of 
great importance in determining whether it is feasible to manufacture an MOE suitable for 
general application. Theory was developed on this topic by taking a conservative approach to 
tolerance. The USC team used a "bandpass selection" filter set to select the spectral region in 
which a MOE should work. The new theory provides an exact definition for the actual bandpass 
region of importance, and how the spectral tolerances where the band begins and ends. It also 
tells us how the tolerance changes with wavelength. 

The key equations of note were found to be: 

L       At(X)=Vco- 
V(X) 

2-      vex+vco(^R-xL)-^ = o 
2k 

In equation 1, V stands for variance, At is the tolerance in transmittance, co means "at the cutoff 
wavelength", and X is wavelength. In equation 2, SEP is the standard error of prediction in the 
calibration, R and L mean "at the right and left cutoffs", respectively, ex means "excluded", and 
k is the gain factor relating the regression vector to the predicted value. These two equations are 
of principal importance in determining the permissible error tolerance in filter design and 
manufacturing, and for determining the bandpass of the coating. Their derivation and use are 
described in the attached manuscript, "Fixed Tolerance Determination for Multivariate Optical 
Elements" which was published in Fresenius J. Anal. Chem. 

The consequence of this investigation was the finding that ideal performance in an MOE would 
be extremely difficult to achieve in practice. In the specific example chosen for the manuscript, 
the designed MOE required some spectral regions to have 0.2% errors in transmittance or better 
for ideal performance. This level of error was found to be unachievable in practice for a fixed 
design. That is, the accumulated error expected in the fabrication of a fixed-design MOE would 
quickly mount to levels greater than the theoretical tolerance at the most critical wavelengths. 
This lead the USC team to the "variable-design" MOE concept that is a subject of current, 
ongoing research. 

3.3    DEMONSTRATION OF MULTIVARIATE OPTICAL COMPUTING 

The USC team completed the SEP coating synthesis programming and applied it to two simple 
chemical problems to determine how this solution to film design works. One of these examples 
is shown below as Figure 1. 



Figure 1. Binary dye spectra corrected for source radiance 

detector response, and filter bandpass. 
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Figure 1 gives a set of optical spectra for mixtures of two dyes. The two dyes have optical 
spectra that overlap one another throughout the wavelength region covered. The samples were 
made by random generation so that the concentrations of the two dyes are independent of one 
another. Consequently, each dye other simulates a random interfering species for measurement 
of the other. 

Simple bandpass filtering was found to work poorly for the measurement of the target chemical 
species in the mixture represented in Figure 1. The SEP approach, on the other hand, gave the 
spectral design illustrated in Figure 2 below. 
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Figure 2. Theoretical transmittance spectrum of an MOE designed 
for the data in Figure 1 at 45 degrees angle of incidence. 

Figure 3 shows the result of actual manufacture of this coating (at normal incidence, not the 45 
degrees incidence at which it would be used). 
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Figure 3. Real (as fabricated) and theoretical spectrum of the MOF 
in Figure 2 at 0 degrees angle of incidence. 

Figure 4 below shows a schematic of the point-detection system into which the Figure 3 MOE 
was placed for demonstration purposes. Figure 5 shows a photograph of the actual prototype 
instrument. 

MOC 

t source T=05+UZ 

Detecto EZL 
oamillp Bandpass 
SamPle selection 

R = 0.5-Lr2 
IT T = transmittance 

R= reflectance 
L= spectral vector 

Figure 4. Schematic of Multivariate optical computing proiot\ fx- 
system for single-point transmission measurements. 

The actual prototype is shown in the following photograph: 



Figure 5. Photograph of prototype system illustrated in Figure 4. 

Figure 6 shows that the system obtained 0.68 jiM SEP rather than 0.3 piM, which was the 
theoretical optimum. The reduction in precision was found to be due to (a) imprecision in the 
manufacture of the MOE and (b) the algorithm for design that was limited to a single angle of 
incidence (no angular dispersion). 
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Figure 6. Results from the MOE built for demonstration purposes. 



3.4     ANGLE-INVARIANT MOES FOR IMAGING SPECTROSCOPY 

As mentioned above, early forms of MOEs were designed to work with collimated light (see 
Figure 7 below). 

MOE 
o 

r—i 
ex 
a 

D R 
Figure 7 - Schematic of the operation of a collimated-light MOE 

Imaging applications require the analysis of light from various angular positions in a field of 
view. This is illustrated in Figure 8 below. 

CCD2 
Figure 8 - angular distribution for an imaging MOE (IMOE) 



In order to accomplish this, a new algorithm was developed that simulated the effects on the 
MOE spectrum of light impinging from different angles, and that optimizes the average 
prediction error over the entire angular range. The performance of this algorithm is illustrated in 
Figure 9, which shows the prediction error for the MOE from the last section as the angle 
deviates from its designed angle of 45 degrees, and compares it to an IMOE designed for the 
same measurement. 

Angle of Incidence (degrees) 
Figure 9. SEP as a function of angle for MOEs designed for 45-degree operation, (circles) SEP for the point MOE 

designed in the last section, (squares) SEP for an IMOE designed with the new angle-invariant algorithm. 

The explanation for how a MOE can be designed for optimal performance over a range of 
incident angles is explained in the appended manuscript describing the algorithm. 



3.5NEAR-INFRARED AND MID-INFRARED SPECTROSCOPY OF ORGANOPHOSPHOROUS 
COMPOUNDS 

A goal for the first year of this project was to record the near-infrared and mid-infrared 
spectroscopies of a number of organophosphorous compounds. 47 compounds were selected; 
their structures and spectra are appended to this report. 

Of particular interest is the near-infrared spectral region, which contains overtone and 
combination band absorbances. Only two of the compounds studied this year differed in the 
nature of the atom doubly-bonded to phosphorous. Tetraethylpyrophosphate and 
tetraethyldithiopyrophosphate differ only in that the former contains oxygen, while the latter 
contains sulfur, doubly-bonded to phosphorous. The near-infrared spectroscopy of these com- 
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Figure 10. Spectroscopy of tetgraethylpyrophosphate (left) and tetraethyldithiopyrophosphate(right). 
Top: mid-infrared absorbance. Bottom: near-infrared absorbance. 

pounds exhibits a combination band that is distinctly different in the two species, and is strongly 
correlated with the behavior of two bands appearing in the mid-infrared spectral region. 
Specifically, two mid-infrared modes for the oxygen species at 1371.1 and 1445.9 cm'1 couple 
with a C-H stretching vibration at 2987.2 cm"1 to produce combination bands at 4345.8 and 
4431.6 cm"1. For the sulfur species, modes at 1367.8 and 1443.5 cm"1 couple with a C-H 
vibration at 2976.1 cm"1 to form combination bands at 4340.5 cm"1 and 4425.9 cm"1. The 
importance of these modes is that they reproduce in the near-infrared the observed differences in 
the mid-infrared.   The mid-IR modes (between 6.9 and 7.1 micrometer wavelength) are 
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diagnostic for the P=S and P=0 assignment in these molecules. However, they occur at a 
wavelength that is very difficult to measure due to blackbody emission and other for other 
reasons. The combination bands show the same intensity differences that the fundamentals 
show, but appear between 2.2 and 2.3 micrometers in wavelength. This wavelength region is 
transparent to high-quality silica optics and can be measured with higher-quality detectors. 
While the intrinsic strength of these absorbances is an order of magnitude less than those in the 
mid-infrared region, much of that loss can be compensated by improved detector quality and the 
loss of the blackbody continuum background that is so troublesome in both active and passive 
measurement of the mid-infrared region. 

Optical spectra, including Raman spectra, of all samples have been obtained, but the research is 
still in progress to the extent that a detailed analysis of the optical spectra is still being 
performed. Preliminary data is available to DOD chemical researchers on request. An appendix 
of this report gives the names of the compounds studied, plus the types of spectra available for 
them. A report detailing the optical spectra of these samples will be prepared during year 2. 

4.0     COMPARISON OF ACCOMPLISHMENTS WITH GOALS DURING 
YEAR1 

The following figure shows the expected progress during Yl and compares it to the actual 
progress. 
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Figure 11. Estimated Schedule of task completion for Yl. All tasks listed have been completed. 

All tasks scheduled for Yl were completed on or ahead of schedule if they were (a) possible and 
(b) not superseded by new discoveries.   Thus, some of the original parts of algorithm 
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development were superceded by discoveries of novel and improved methods for designing 
MOEs. Also, while field trial data were obtained from Air Force sources, the data were 
inadequate for the scheduled efficacy calculation. Nevertheless, the Myrick group was able to 
show for one of the data sets that a multivariate regression vector could be developed for 
dimethylmethylphosphonate in the field trial data that performed comparably to the algorithms 
used in the field test. 

The setup of a diffuse reflectance system was completed during Yl, although it was not 
scheduled until early Y2, and it is listed in the figure. 
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An All-Optical Approach to Multivariate Prediction 
ML. Myrick 
Presented at Shedding New Light on Disease:  Biodiagnostics in the New Millenium, 
Winnipeg, Canada, June 25-28,2000. 

A Spectroelectrochemical Study of Poly(p-Phenyleneethynylene) Based Polymers 
U.M. Evans, H. Li and ML. Myrick 
Presented at Federation of Analytical Chemistry and Spectroscopy Societies, Nashville, 
TN Sept 24-28,2000. 
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Optical Computing 
D. Eastwood, O. Soyemi, J. Karunamuni, L. Zhang, H. Li and M.L. Myrick 
Presented at Federation of Analytical Chemistry and Spectroscopy Societies, Nashville, 
TN Sept 24-28,2000. 

Interference Coating Design for Optical Computing Using Multivariate Nonlinear Optimization 
O. Soyemi, P. Gemperline, J. Karunamuni, L. Zhang, H.Li, D. Eastwood and M.L. 
Myrick 
Presented at Federation of Analytical Chemistry and Spectroscopy Societies, Nashville, 
TN Sept 24-28, 2000. 

Novel Filter Design Method for Multivariate Optical Computing 
O. Soyemi, P J. Gemperline and M.L. Myrick 
Presented at the Southeast Regional Meeting on Optoelectronics, Photonics and Imaging, 
Charlotte, NC, Sept. 18-19,2000. 

Preliminary Results of Stand-Off Sensing Using Visible/NTR Multivariate Optical Computing 
D. Eastwood, J. Karunamuni, O. Soyemi, H. Li and L. Zhang 
Presented at the Southeast Regional Meeting on Optoelectronics, Photonics and Imaging, 
Charlotte, NC, Sept. 18-19,2000. 

Recent Work in Multivariate Optical Computation 
ML. Myrick, O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni 
Presented at Southeast Association of Analytical Chemistry Conference, Greenville, 
NC, Oct. 5-7, 2000. 

AFM of electrochemically doped conducting polymers 
M.S. Doescher, U.M. Evans, and ML. Myrick 
Presented at Southeast Association of Analytical Chemistry Conference, Greenville, 
NC, Oct. 5-7,2000. 

Preliminary Results of Stand-Off Sensing Using Visible/NIR Multivariate Optical Computing 
ML. Myrick, D. Eastwood, J. Karunamuni, O. Soyemi, H. Li and L. Zhang 
Presented at Joint Conference on Point Detection, Williamsburg, VA Oct 22-26, 2000. 

Comparison of two novel approaches to designing interference coatings for multivariate optical 
computing 

O. Soyemi, P. Gemperline, J. Karunamuni, L. Zhang, H. Li, D. Eastwood, M.L. Myrick 
Presented at SPIE Photonics East Conference, Boston, MA, Nov 5-9,2000. 

A Process Optimization Procedure for Mulivariate Optical Element (MOE) Manufacture 
O. O. Soyemi, P. Gemperline and M.L .Myrick 
Presented at the Pittsburgh Conference on Analytical Chemistry, New Orleans, LA, 
March 4-9,2001. 
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An Electrochemical Investigation of Electroluminescent Conjugated Polymers 
U. Evans, U.H.F. Bunz, H. Li and M.L. Myrick 
Presented at the Pittsburgh Conference on Analytical Chemistry, New Orleans, LA, 
March 4-9,2001. 

Atomic Force Microscopy of Electrochemically Doped Conducting Polymers 
M.S. Doescher, U. Evans and M.L. Myrick 
Presented at the Pittsburgh Conference on Analytical Chemistry, New Orleans, LA, 
March 4-9,2001. 

Advances in Standoff Sensing Using Visible-NIR Optical Computing 
M.L. Myrick, D. Eastwood, J. Karunamuni, O. Soyemi, H. Li and L. Zhang 
Presented at the Pittsburgh Conference on Analytical Chemistry, New Orleans, LA, 
March 4-9,2001. 

Simple optical computation device for chemical analysis 
O. Soyemi, R. Karunamuni, Univ. of South Carolina; P. J. Gemperline, L. Zhang, H. Li, D. 

Eastwood, M. L. Myrick 
Presented at SPIE Photonics West Conference, San Jose, CA, Jan. 20-26,2001. 

Chemical Sensing via Multivariate Optical Computing 
ML. Myrick, O.O. Soyemi, H. Li and P J. Gemperline 
Presented at the International Symposium on Spectral Sensing Research (ISSSR), Quebec 
City, Canada, June 10-15,2001. 

8.0     DISCOVERIES AND INVENTIONS 

Novel Filter Design Algorithm for Multivariate Optical Computing 
Inventors: M.L. Myrick, O. O. Soyemi, and P.J. Gemperline 
Provisional Patent Application Number: 60/235,336. 

9.0     OTHER GRANTS RELATED TO F33615-00-2-6059 

The most recent grant to support research related to that of F33615-00-2-6059 was grant number 
DOD-N-000014-97-1-0806, received by the University of South Carolina and in effect from 
6/1997-6/2000. The University received a 1-year no-cost extension of this grant from the Office 
of Naval Research for accounting purposes, although no new work was done that was attributed 
to the ONR grant after 6/00. This is the grant that provided support for the acquisition of the 
visible-light deposition system used during Yl of the present grant. Publications that were 
attributed to both DOD-N-000014-97-1-0806 AND F33615-00-2-6059 were: 

Spectral Tolerance Determination for Multivariate Optical Element Design 
M.L. Myrick, S. Soyemi, H. Li, L. Zhang and D. Eastwood 
Fres. J. Anal. Chem. 369(2001). 351. 
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Interference Filter Refinement for Array-Based Fluorescimetric Sensing 
J. Karunamuni, K.E. Stitzer, D. Eastwood, K.J. Albert, D.R. Walt, S.B. Brown and M.L. 
Myrick 
Optical Engineering 40 f200IV 888-95. 

Field applications of stand-off sensing using visible/NIR multivariate optical computing 
D. Eastwood, O. Soyemi, J. Karunamuni, L. Zhang, H. Li, and M.L. Myrick 
SPffi 4199 (2001), 105. 

Novel Filter Design Algorithm for Multivariate Optical Computing 
O.O. Soyemi, PJ. Gemperline, L. Zhang, D. Eastwood, H. Li, and ML. Myrick 
SPJE 4205 (2001), 288. 

For these four publications, acknowledgement of DOD-N-000014-97-1-0806 was for the support 
of Lixia Zhang and Jeevananda Karunamuni prior to the start of F33615-00-2-6059. All research 
for these reports (EXCEPT the Optical Engineering report) was conducted in 6/00 and thereafter 
under the total support of F33615-00-2-6059. Research for the OE report was conducted prior to 
the beginning of F33615-00-2-6059 with ONR and DARPA support. F33615-00-2-6059 was 
acknowledged for supporting the salary of D. Eastwood during revision of the manuscript in the 
summer of 2000. 

The ONR grant supported work in molecular computing and fiber-optic technique development, 
plus optical computing for image and data compression. Other reports totally or partially 
attributed to DOD-N-000014-97-1-0806, with no attribution to F33615-00-2-6059 are: 

The Use of a 2D to ID Dimension Reduction Fiber-Optic Array for Multi-Wavelength Imaging 
Sensors 

M. V. Schiza, M. P. Nelson, M. L. Myrick, S. M. Angel 
Appl. Spectrosc. 55 (2001), 217. 

Stripping Voltammetry of Cu Overlayers Deposited on Self-Assembled Monolayers: Field 
Emission of Electrons Through A Phenylene Ethynylene Oligomer 

M.S. Doescher, A. Rawlett, J.M. Tour and ML. Myrick 
J. Phys. Chem. B 105(2001), 105. 

Fluorescence Fingerprint of Waters: Excitation-Emission Matrix Spectroscopy as a Tracking 
Tool 

Y. Yan, H. Li and ML. Myrick 
Appl. Spectrosc. 54 (2000), 1539. 

Simple Techniques for Chemical Imaging at Many Wavelengths Simultaneously, Using a Novel 
2D to ID Optical Fiber Array 

S.M. Angel, M.V. Schiza, ML. Myrick and M.P. Nelson 
SPJE 4074 (2000), 99. 
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Kinetic and Spectroscopic Profiles of Pyridine Complexes at a Silver Electrode Using Surface- 
Enhanced Raman Scattering (SERS) and Evolving Factor Analysis 

M.A. Nicholson, J.F. Aust, K.S. Booksh, W.C. Bell and M.L. Myrick 
Vibrational Spectroscopy 24 (2000), 157. 

The Lowest Electronic Excited States  of poly(para-cyclobutadienylenecyclopentadienyl- 
cobalt)butadiynylene 
B. Craig Harrison, J. Seminario, U. Bunz and M.L. Myrick 
J.Phys.Chem. 104 (2000), 5937. 

Simultaneous Enantiomeric Determination of Dansyl-DL-Phenylalanine by Fluorescence 
Spectroscopy in the Presence of _-Acid Glycoprotein 

Yuan Yan and M.L. Myrick 
Anal. Chem. 71(1999). 1958. 

Time-dependent multivariate single-frame chemical imaging spectroscopy of laser plumes using 
a dimension reduction fiber optic array" 

M. P. Nelson, M. L. Myrick 
SPffi 3649(1999), 92-99. 

Thermodynamic Characterization of Separation Phenomena at the Silica/Polymer Interface 
within Glass-Reinforced Composites using Adsorption Chromatography. Part I. 

A.R. Muroski, M.P. Nelson and M.L. Myrick 
J. Adhesion Sei. Technol. 13(1999), 437. 

Fabrication and Evaluation of a Dimension-Reduction Fiber-Optic System for Chemical Imaging 
Applications 

M.P. Nelson and M.L. Myrick 
Rev. Sei. Instrum. 70(1999), 2836. 

Single-Frame Chemical Imaging: Dimension Reduction Fiber-Optic Array Impro\ ements and 
Application to Laser-Induced Breakdown Spectroscopy. 

M.P. Nelson and ML. Myrick 
Appl. Spectrosc. 53(1999), 751. 

New Developments in Two-Dimensional Fluorescence Spectroscopy for Rapid Detection of 
Organics in Seawater 

ML. Myrick and Y. Yan 
SPffi 3854 (1999), 65. 

New Approaches to Implementing Predictive Spectroscopy 
ML. Myrick 
SPffi 3854 (1999), 98. 
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Assignment of the Optical Transitions in 1,3-Diethynylcyclobutadiene (cyclopentadienyl)cobalt 
Oligomers 

H. Rengel, M. Altmann, D. Neher, B.C. Harrison, M.L. Myrick and U.H.F. Bunz 
J.Phvs.Chem. 103(1999),10335. 

High-Speed Detection of Explosives. 
K.J. Albert, M.L. Myrick, S.B. Brown, F.P. Milanovich and D.R. Walt 
SPffi 3710 (1999), 308. 

Hyperspectral Imaging Sensors Using a Novel 2D to ID Fiber Array 
M.V. Schiza, M.P. Nelson, M.L. Myrick, and S.M. Angel 
SPffi 3860 (1999), 317-325. 

Another grant acknowledged jointly with F33615-00-2-6059 is the DARPA grant DAAK-60-97- 
K-9502. This grant supported the salary of J. Karunamuni for research leading to the report 
published in Optical Engineering listed above. F33615-00-2-6059 was acknowledged for 
support of D. Eastwood's salary during the revision of the Optical Engineering manuscript in 
summer of 2001. 
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10.0 APPENDIXES 

The appendixes include the following sections. 

10.1 SPECTRAL TOLERANCE DETERMINATION FOR MULTIVARIATE OPTICAL 

ELEMENT DESIGN 

This is a manuscript that describes the permissible error limits in design or 
manufacturing of optics for multivariate optical computing 

10.2 SPECTROELECTROCHEMICAL STUDY OF THE O XIDATIVE DOPING OF 

POLYDIALKYLPHENYLENEETHYNENE USING ITERATIVE TARGET 

TRANSFORMATION FACTOR ANALYSIS 

This manuscript describes the optical properties of an organic thin film prepared 
from a spin-cast polymer 

10.3 FIELD APPLICATIONS OF STAND-OFF SENSING USING VISIBLE/NIR 

MULTIVARIATE OPTICAL COMPUTING. 

This manuscript describes basic investigations at an initial stage for understanding 
multivariate optical computing. 

10.4 DESIGN AND TESTING OF A MULTIVARIATE OPTICAL ELEMENT (MOE): THE 

FIRST DEMONSTRATION OF MULTIVARIATE OPTICAL COMPUTING FOR 

PREDICTIVE SPECTROSCOPY 

This manuscript describes the USC Team's first successful demonstration of 
multivariate optical computing, and was featured on the cover of the journal 
Analytical Chemistry. 

10.5 NOVEL FILTER DESIGN ALGORITHM FOR MULTIVARIATE OPTICAL COMPUTING 

This manuscript describes a new concept and algorithm for designing optical 
elements for multivariate optical computing. 

10.6 SIMPLE OPTICAL COMPUTING DEVICE FOR CHEMICAL ANALYSIS 
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This manuscript describes preliminary data for a multivariate optical element 
design and fabrication. 

10.7   INTERFERENCE FILTER REFINEMENT FOR ARRAY-BASED FLUORESCIMETRIC 

SENSING 

This manuscript describes an interference filter solution designed and constructed 
in the USC laboratory for application to fluorescence sensing of TNT vapors. 

10.8  A SINGLE-ELEMENT ALL-OPTICAL APPROACH TO CHEMOMETRIC PREDICTION 

This manuscript describes the basic concept of multivariate optical computing, and how it 
has evolved over the period 1998-2000 from two-filter to single-element designs. 

10.9   A NONLINEAR OPTIMIZATION ALGORITHM FOR MULTIVARIATE OPTICAL 

ELEMENT DESIGN 

This manuscript describes in detail the functioning and analysis of the novel 
design algorithm for multivariate optical elements reported earlier. In addition to 
describing the algorithm, it details how that algorithm can be used to compensate 
for fabrication errors during production. 

10.10 DESIGN OF ANGLE-TOLERANT MULTIVARIATE OPTICAL ELE-:ME:N I S FOR 

CHEMICAL IMAGING 

This manuscript describes a new concept for multivariate optical element-- in 
which elements are designed to function with an angular distribution ot liyht. such 
as that inherent in imaging applications. 

10.11 LIST OF ORGANOPHOSPHORUS COMPOUNDS WHOSE MIR, NIR AND RAMAN- 

SPECTRA HAVE BEEN MEASURED AT THE USC LABORATORY. 
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Abstract Recent reports from our laboratory have de- 
scribed a method for all-optical multivariate chemometric 
prediction from optical spectroscopy. The concept behind 
this optical approach is that a spectral pattern (a regres- 
sion vector) can be encoded into the spectrum of an opti- 
cal filter. The key element of these measurement schemes 
is the multivariate optical element (MOE), a multiwave- 
length interference-based spectral discriminator that is 
tied to the regression vector of a particular measurement. 
The fabrication of these MOEs is a complex operation 
that requires precise techniques. However, to date, no 
quantitative means of determining the allowable design/ 
manufacturing errors for MOEs has existed. The purpose 
of the present report is to show how the spectroscopy of a 
sample is used to define the accuracy with which MOEs 
must be designed and manufactured. We conclude this re- 
port with a general treatment of spectral tolerance and a 
worked example. The worked example is based on actual 
experimental measurements. We show how the spectral 
bandpass is defined operationally in a real problem, and 
how the statistics of the theoretical regression vector in- 
fluence both the bandpass and the minimum tolerances. In 
the experimental example, we demonstrate that tolerances 
range continuously between 1 (totally tolerant) to approx- 
imately 10-3 (0.1% T) in this problem. 

Introduction 

Multivariate spectroscopy is a powerful tool for analytical 
determinations of the chemical and physical characteris- 
tics of a wide range of sample types via chemometrics. In 
one common approach for applying multivariate model- 
ing to chemical problems, a spectral pattern that correlates 
with a dependent variable is found. In subsequent mea- 

M. L. Myrick (13) • O. Soyemi • H. Li • L. Zhang • D. Eastwood 
Department of Chemistry and Biochemistry, 
University of South Carolina, Columbia, SC, 29208, USA 

surements of unknown samples, predictions of the depen- 
dent variable are made by computing the magnitude of 
this spectral pattern in the optical spectrum of the un- 
known [1]. 

A recent report from this laboratory [2] describes an 
all-optical approach to the last step in this procedure, the 
magnitude calculation given by the scalar product of a re- 
gression vector with the spectrum of an unknown sample. 
The first reports of a fully optical approach to multivariate 
chemical measurement were those of Bialkowski [3]. The 
all-optical approach proposed in our laboratory differs 
from Bialkowski's as it centers around the production of 
one or more optical interference coatings whose transmis- 
sion spectra incorporate features of the spectral regression 
vector. A recently reported permutation on the original 
concept permits this pattern to be expressed in a single 
multivariate optical element (MOE) used as a 45-degree 
beamsplitter in a T-format instrument [4]. This permuta- 
tion of the MOE based on chemometrics is most similar to 
a design proposed by Ryabenko and Kasparov [5]. 

MOEs of the type we have proposed can be designed 
by commercially-available software packages by assign- 
ing the desired spectral transmission profile of the MOE 
as a target for an iterative solution. However, these pro- 
grams operate by successive approximations; exact solu- 
tions are not, in general, possible. To date, no report has 
been made of any method for determining the wave- 
length-dependent limits on spectra] errors (i.e., the tolera- 
ble spectral variance) that are permissible in the design of 
MOEs. 

The present manuscript describes the development of a 
general approach to determining the spectral tolerance of 
MOEs. The approach taken here is to define lower and upper 
wavelength limits beyond which tolerances are unneces- 
sary, and then to distribute the prediction errors caused by 
coating misfit even between these limits. Because no a priori 
knowledge of the final iterative solution can be available 
at the start of the design process, the authors take the con- 
servative approach of assuming that all spectral errors will 
sum in the result in the worst possible way. All computa- 
tions are developed for numerical solution in real problems, 
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as opposed to computations that depend on analytical ex- 
pressions for spectral shapes and variances. This work is 
completed with an example application based on real data. 

There are two main applications for the equal ions de- 
veloped here. First, they provide tolerance criteria for the 
design of MOEs via spectral matching. That is. in some 
permutations of MOE design, a spectral pattern can be de- 
fined from standard chemometric approaches which the 
MOE must faithfully reproduce. The criteria developed 
here specify how closely the design must reproduce the 
target spectrum of an MOE synthesized in this way. The 
second application for these equations is to define manu- 
facturing tolerances. Regardless of how an MOE is de- 
signed, fabrication must produce an actual device that re- 
produces the design within the limits set by these equa- 
tions if there is to be no degradation of prediction com- 
pared to theory. 

radiant sensitivity at the peak wavelength (550 nm) of 3.8 V/mW. 
The relative signal intensity (detector response) vs. wavelength 
was estimated from a Linos Photonics data sheet with values mea- 
sured at 25 degrees C and 12 V DC supply voltage. 

The bandpass filter set, used to isolate the spectral region be- 
tween 400 nm and 650 nm, consisted of two 3 mm thick Schott 
glass filters (Duryea, PA) BG-39 and GG400. 

The binary dye mixtures used for initial testing of our MOC fil- 
ter design were prepared from two water-soluble dyes obtained 
from Aldrich Chemical Company, Bismarck Brown Y (BB) (max 
457 nm, dye content 50%) and Crystal Violet (CV) (max 590 nm, 
ACS reagent dye content 95%). Stock solutions in distilled water 
of BB at 6.72 x 10~5 M and CV at 1.64 x ICH M were prepared. 
Then random numbers were generated and applied to the concen- 
trations of the dyes with dilution to determine that the relative con- 
centrations of the two dyes were varied independently. In the dilu- 
tion process transmission values were kept between 10% and 90% 
in the mixtures. In this manner 40 binary dye solutions were pre- 
pared and their transmittance spectra were measured. Twenty-five 
of these spectra were used to generate a regression vector and 15 
were kept as a test set. 

Experimental 

A Hewlett-Packard UV-Vis diode array spectrophotomcier Model 
8543 was used to collect transmission and absorption data on bi- 
nary dye mixtures for this study. A compact prototype field instru- 
ment (Fig. 1) was designed and constructed for this project to show 
proof of concept using Linos Photonics (Milford MA) optical com- 
ponents. The characteristics of bandpass filters, lamps mid detec- 
tors in the prototype instrument were used to convert iransmitiance 
spectra of calibration samples into detector spectral responses. 

A 6 V/6 W tungsten filament lamp with 1 x 1.2 mm active fil- 
ament area was used as a light source in the Fig. 1 instrument. The 
spectral radiance of the lamp was measured in W per (steradian x 
cm2 x nm) with a CCD spectrometer system (consisting of a 
Chromex 250IS spectrometer with 300 lines/mm grating and a 
Princeton Instruments 1100 x 300 pixel CCD camera, model 
TE/CCD-1100-PE). The input optics of the spectrometer system 
were duplicates of the Fig. 1 system. For these measurements, the 
operating voltage for the lamp was fixed at 5.76 V. The wave- 
length range of the CCD camera/spectrometer system was cali- 
brated with a standard mercury penray lamp and a standard neon 
lamp. The spectral radiance of the lamp under these conditions was 
calibrated against an OL series 455 integrating sphere calibration 
standard lamp (Optronic Laboratories, Inc.) operated under stan- 
dard conditions. 

The two Si photodiode active detectors were type BPW21 with 
a sensitive area of 2.7 x 2.7 mm2, spectral range 320-820 nm and 

Discussion 

Prediction error 

Fig.l Layout of a single-element system in which a multivaiiate 
optical element acts as a 45-degree beamsplitter. MOE is the opti- 
cal element, L is a lamp, P is a spatial filtering pinhole. V is a sam- 
ple, B is a bandpass selection filter set, D+ and D- arc detectors 
for the transmitted and reflected light from the MOE 

Figure 1 shows a schematic of the optical layout for a sin- 
gle-MOE measurement system, illustrating that both 
transmittance through and reflectance from the MOE are 
detected. The estimated prediction, C'pred, for a quantity in 
an unknown sample is given by Eq. (1): 

C'pred = k(T'-R')xS + 0. (1) 

In this equation, T' and R' are vectors representing the 
real transmittance and reflectance of the MOE, S is a vec- 
tor for the spectrum of the unknown, k is a scalar gain fac- 
tor and O is a constant scalar offset. 

For interference filters made from non-absorbing or 
approximately non-absorbing materials, the transmittance 
and reflectance sum to unity at each wavelength. Under 
this approximation, we can write the vector difference in 
parentheses in Eq. (1) as: 

T - R' = 21" -1 (2) 

where 1 represents a column vector of dimension equal to 
the number of wavelengths that contains all ones. 

The error in prediction due to errors in the spectrum of 
the MOE can be determined by inserting the definition 
T' = T + AT into Eq. (2), which can be rearranged into 
the form of Eq. (3): 

C'pred = k(2T-l)xS + 0 + 2kATxS (3) 

where T is the intended transmittance, or target transmit- 
tance, of the MOE and AT is the spectral error vector. 

The first two terms on the right-hand side of Eq. (3) 
constitute the "ideal" prediction which an ideal, error-free 
MOE would have produced. Note that the "ideal" predic- 
tion is not the same as the "true analytical variable" whose 
value we can only know via the reference method for the 
underlying chemometrics, but only our usual chemomet- 
ric prediction of that variable. 
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Expressing the difference between the actn:il predic- 
tion and the ideal prediction as ACpred, we can \\ rite: 

ACpred=2kXAtiSi. (4) 

In Eq. (4) the scalar product has been rewritten in the 
form of a summation of the individual wavelength-depen- 
dent terms. We are interested in the dependence of ACpi.ed 

on the spectrum of the unknown since, once fabricated, 
the spectral errors in the MOE are fixed. In particular, we 
are interested in the variance of ACpre(j with the spectral 
variance, because constant offsets in ACpred can he ac- 
counted for easily in operation. By a constant < ■ffsct. we 
mean any component of prediction error that does not 
vary from sample to sample. In the basic multivnriate op- 
tical computing approach, the measurement device is op- 
erated much like a pH meter is used: a couple of standard 
samples are inserted into the device to set a gain and off- 
set factor. Constant components of the offset arc implic- 
itly removed by this procedure. Eq. (5) can be used to 
evaluate the dependence of the prediction variance with 
respect to the spectral variance. 

3ACpred = 2 k£AtA = 2 k J At(A.)3s(A.)dA (5) 
i xL 

In Eq. (5), XR and A.L, are the bandpass cutoff wave- 
lengths. There is a fine point to be made here. The effect 
of MOE errors at different wavelengths on prediction can 
be either positive or negative. One can imagine conditions 
in which the spectral errors in an MOE offset one another 
more or less exactly. An example would be two MOEs 
that code for different valid regression vectors for the 
same measurement. One of these MOEs could be pictured 
as an erroneous version of the other that just happens to 
give completely valid results. However, since \ e cannot 
know the patterns of spectral variance in the original data 
a priori, we will assume they all sum as random error. The 
partial derivatives on each side of this equation can then 
be identified with the variance in prediction error. Vc. and 
the variance in the spectral intensity at each wavelength, 
V(A). 

Tolerance as a function of wavelength 

A simple relationship between the tolerable error in MOE 
transmittance and the spectral variance at each wave- 
length can be obtained by integrating by parts CF.q. (6)): 

J V(A)d(At(X)) = [V(X)Ata)]5- -jAt(X)d V(X) (6) 

In this equation, the spectral variance and MOE error vec- 
tor (spectral tolerance) are treated as continuous functions 
of wavelength. Figure 1 shows that the spectral window 
over which the MOE is calculated is determined largely 
by a bandpass filter set (or equivalently by a combination 
of a long-wavelength pass filter and a detector cutoff, or 
by a light source spectrum and detector spectrum, etc.). 

By using limits of integration in Eq. (6) that are far to the 
left or right of the spectral bandpass, we assure that the 
first term on the right, the difference between the vari- 
ance-error function at the limits of integration, is zero. 
This is because the error in transmittance is limited to 
unity since MOEs have transmittance values limited to the 
range 0 < t < 1. Since the spectral intensity outside the 
bandpass is always zero, the spectral variance falls to zero 
there as well. This simplifies Eq. (6) to the form: 

J V(A)d( At(A)) = - J At(A)d V(k) (7) 

Taking the derivative of both sides, we can easily re- 
arrange the result and reintegrate to show that: 

At(X) : 
V(A) 

(8) 

where G is a constant of integration. Eq. (8) relates the 
permissible error in transmittance at a particular wave- 
length to the spectral variance at the same wavelength. 
For the small values of variance typically found outside 
the bandpass of the measurement, the permissible error in 
transmittance can reach as much as unity. This provides a 
rational basis on which to determine the effective band- 
pass. The bandpass can be defined as the wavelength re- 
gion over which the allowable error in transmittance is 
less than unity. 

Finding the effective bandpass 

Returning to Eq. (5), the integral on the right-hand side 
can be separated into integrals over wavelengths above 
and below the bandpass cutoff wavelengths, XR and XL, 
plus an integral over the bandpass between those limits. 
Below XL and above XR, the allowable transmittance error 
can be assumed to be fixed at 1. In an operational sense, 
this means that outside the spectral bandpass, the trans- 
mittance of the MOE no longer matters. As a result, the 
integrals below and above the cutoff wavelengths become 
integrals of the excluded variance alone, Vex. Eq. (8) pro- 
vides a substitution for M(X) in the region between the 
cutoff wavelengths that permits integration to give: 

9AC 

2k 
E=Uvex+GaR-AL) (9) 

This equation can be used to determine the effective band- 
pass by noting that G is the value of V(X) at which At(X) 
equals unity. G is thus the bandpass cutoff spectral vari- 
ance, represented by Vco = V(A,L) = V(XR). The permissi- 
ble variance in prediction error can be reasonably identi- 
fied with the square of the standard error of prediction in 
the original regression analysis, (SEP)2. Making these in- 
sertions and rearranging, we get: 

cpp2 
Vex+Vco(XR-AL)-^- = 0 (10) 

Eq. (10) provides a direct route for determining XL and XR. 
To understand how this is done, consider a simple data set 
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in which V(X) passes through a single maximum, Vm.lx, 
and falls toward zero on either side. At values of V(A) be- 
tween zero and V,^, every line of constant variance 
crosses the spectral variance curve at two different wave- 
lengths. The integrated variance outside these wave- 
lengths gives Vex, the spectral variance at these wave- 
lengths is Vco, the two wavelengths are Xt and AK, and the 
remaining factors in Eq. (10) are constants. In a real data 
set, values of spectral variance can be chosen that define a 
curve with a single root. This root is a solution that de- 
fines the important parameters Vco (=G), XL and AR. Out- 
side this spectra] range the allowable error in trans mit- 
tance is assumed to be 1, while inside the spectral window 
it is given by Eq. (8). 

A minor reinterpretation of Eq. (10) is adequate to ex- 
tend the model to cases in which the spectral variance is not 
unimodal and where the bandpass encloses one or more 
bandblocks. In these cases, Vco is the cutoff value of spectral 
variance at any single channel, Vex integrates variance over 
all channels with variance below this cutoff value, and the 
difference in cutoff wavelengths is replaced by an sum- 
mation of the number of wavelengths with variances above 
the cutoff variance. This interpretation is simple to imple- 
ment with most spreadsheet programs by sorting the vari- 
ances and calculating the left-hand side of Eq. (10) for 
each value of variance to locate the root of the equation. 

One further point remains to be made regarding Eqs. 
(8) and (10). These two equations set the spectral toler- 
ances in design or manufacturing based on the SEP of the 
conventional measurement. This implies that if an MOE 
is produced with errors equal to the tolerances at all" wave- 
lengths, we should anticipate the SEP for the measure- 
ment might degrade by v2. Put another way: the funda- 
mental SEP of the measurement due to errors in the re- 
gression model represents a lower-bound to the SEP that 
can be produced by an MOE system. SEPs with magni- 
tudes that result from low signal strengths (e.g., counting 
statistics) could be improved by an MOE system since the 
light-gathering and light-analyzing power of the optical 
computing approach is much better than most conven- 
tional instruments. But if the model itself is the limiting 
factor in error, then an MOE cannot improve it but can 
only degrade it. The challenge is to make that degradation 
as small as possible. 

A worked example 

Consider the data for spectral intensity through a series 
of Bismarck Brown/Crystal Violet dyes shown in Fig. 2. 
A calculation of the spectral variance in this data set, 
V(A,), is shown in Fig.3. A regression analysis of the dye 
data in Fig. 2 gives an SEP of 0.3 \xM for the prediction of 
Bismarck Brown at concentrations up to 16 uM. and a re- 
gression vector that, when transferred to an MOE, gives 
k = 40 pM-nm/V. Using these values, the left-hand side 
of Eq. (10) varies with the spectral variance as shown in 
Fig.5. This figure indicates that the cutoff spectral vari- 
ance is nearest 5.52 x 10"6 V2/nm. This value of Vr„ oc- 

Ü 0.2' 
Q 

"I— 

420 

 1— 

460 
—1 1 1 1— 

500       520       540       5« 

Wavelength (nm) 

Fig. 2 A series of 40 spectra for a two-dye mixture consisting of 
Bismarck Brown and Crystal Violet with uncorrelated concentra- 
tions. These spectra are produced as described in the text 
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Fig. 3 The spectral variance in the data sets of Fig. 2 
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Fig. 4 An equation 10 plot based on the data in Fig. 3 giving the 
root of the equation as 5.52 x 10~* Wnm 

curs on the left of Fig. 3 nearest X = 424 nm, and on the 
right of Fig. 4 nearest X = 622 nm. These limits then de- 
fine spectral bandpass over which tolerances are required. 
The tolerances outside this range are set to 1, while those 
in this range are set to VC</V(A). The tolerances thus vary 
over about 3 orders of magnitude, from unity to near 1 x 
10~3, as shown in Fig. 5. The region of tolerances less than 
about 0.005 (0.5% transmittance) extends from 474 nm 
to 590 nm. To aid in visualizing these tolerances, Fig. 6 
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Fig.5 Calculated tolerances for an MOE based on FISJS.3 and 4. 
Units are based on a maximum transmittance of 1 
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Fig.6 A proposed spectrum for an MOE for the Bismarck Biowii/ 
Crystal Violet samples. Error bars are taken from the tolerances in 
Fig.5. Any MOE with a spectrum falling within the liniiis defined 
by these error bars will perform approximately the same 

shows the regression vector (obtained from PCR for the 
data of Fig. 2 based on 4 principal factors) with these tol- 
erances provided as error bars. These tolerances are suffi- 
cient for a thin-film design program to achieve a usable 
solution via iteration. In some cases, the tight tolerances 
required in the central portion of the MOE spectrum are 
readily achievable, while in others they are not. In gen- 
eral, complex MOE structures reduce the likelihood of 
achieving the most restrictive tolerances. An approach to 
solving this problem is to redesign the MOE following 
each material layer deposition; this problem will be ad- 
dressed in a future report. 

100 nm instead of 200 nm, the cutoff variance would have 
been approximately twice the value obtained here, which 
would double all the tolerances and make MOE produc- 
tion easier. Likewise, peaked variance distributions such 
as the one given here will give rise to regions of very low 
tolerance to design error and manufacturing defects in a 
single-element MOE design. Another consideration is that 
the transfer of a regression vector to the target spectrum of 
an MOE coating is very flexible in the sense that any am- 
plification factor is permissible. The modulation of the 
spectra] function can be made larger or smaller depending 
on this factor, provided that one keeps the hypothetical 
MOE spectrum within the limits of physicality. However, 
small modulations will yield large values of k, the gain 
factor. The result will be smaller values of Vco, leading to 
a wider bandpass and lower tolerances throughout the 
spectra] bandpass. 

The development of MOEs and multivariate optical 
computing as an alternate method for implementing mul- 
tivariate prediction is only at its inception. Within limits 
(whose bounds are not fully determined at present), one 
can imagine using MOEs to perform many types of multi- 
variate spectroscopic calculations. The application of 
MOEs is not to perform measurements that cannot be per- 
formed by conventional spectroscopy, but to perform 
them faster, with less complex instrumentation and at far 
lower costs. To place this in context, recent work in our 
laboratory has shown that we can produce 50+ identical 
1/4 < -square MOEs in a single run. Extrapolated to a true 
commercial facility, the cost of producing MOEs could be 
as little as a few $US per element. The devices that could 
be produced from them might look and feel a lot like a 
"tricorder" from the Star Trek television series. But these 
simple-looking devices would use the power of complex 
multivariate spectroscopy to perform necessary tasks in 
medicine (e.g., glucose measurement), agriculture (ripe- 
ness, moisture content, etc.), industry (e.g., fuel quality) and 
combat (e.g., chemical detection). Our laboratory is currently 
exploring the practical design and fabrication of MOEs. 
From an optimistic viewpoint, these tools could bring mul- 
tivariate spectroscopy to the mass consumer market. 
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Iterative target transformation factor analysis (ITTFA) was used to determine the spectra of the individual species 
generated during the oxidative p-doping of films of polyfywa-phenyleneethynylene) (PPE). UV-visible spectra of 
PPE films on transparent electrodes were obtained in-sim during an anodic sweep. ITTFA identified 4 species 
present during the oxidation, which we assign as neutral polymer, polaron species, bipolaren species, and a species 
formed by further bipolaren reaction. The region of electrochemical stability for each of these species was 
identified and their potential-dependent profiles were obtained. This work is the first deconvolution of conjugated 
polymer spectroelectrochemistry. 

Introduction 

Electronically conducting polymers with IE-conjugated back- 
bones have been actively studied in recent years.1 The 
conjugated backbone of these polymers leads to extensive 
electron delocalization; nevertheless, the quantum-confined 
nature of the structure leads to large bandgap energies, making 
the polymers insulators or weak semi-conductors in their neutral 
(undoped) state.2 Electrochemical oxidation (p-doping) of 
conjugated polymers can create mobile charge-carrying defects 
that result in increased conductivity; these charged sites are 
balanced by anions that migrate into the polymer. Doping 
introduces new defect-centered electronic states that exhibit 
distinctive optical transitions. Undoped polymers exhibit the 
characteristic n—n* transitions of conjugated organic mole- 
cules; the new mid-gap states introduced by doping generally 
result in new red-shifted absorbances. Two major defect types 
can be formed on oxidation. The first of these are polarons, 
molecular radical cations, which are formed at low doping 
levels. Bipolarons, dicationic defects delocalized over a number 
of repeat units, may be formed at higher doping levels.7 

In our laboratory, we have recently studied conductivity and 
charge-carrier mobility in polyphenyleneethynylene-bascd pol- 
ymers. Phenylenevinylene and the related phenylenecthynylene 
polymers constitute an important class of conducting polymers 
with applications in optoelectronic devices and materials.4-5 

In this work the spectroelectrochemistry of a novel 
2,5-dialkyl(paraphenyleneethynyIene) polymer, synthesized by 
us, has been investigated. This polymer has been shown to emit 
light blue shifted from poly(p-phenylenevinylene), (PPV) and 
has been investigated as an emitting layer in organic electro- 
luminescent (OEL) devices.6-7 Efficiency in OEL devices is 
directly related to the oxidation and reduction potential of the 
emitting layers.8-9 Wrighton et al.10 examined the cyclic 
voltammetry of a dialkoxy-poly(para-phenyleneeihyn\ lene)- 
derivative in solution and found that it is irreversibly oxidized at 
1.05 V (vs. calomel) in liquid S02. However, to dale the 
electrochemistry of poly(para-phenyleneethynylenc)s (j'PEs), 
especially in solid-state films, is largely unexplored 

Spectroelectrochemistry is a powerful technique for the 
determination of the intermediates in conjugated polymer 
oxidation.11 Raptae?al. studied the oxidation of polypyrrolc by 

in-situ EPR/UV-vis spectroscopy and determined the UV-vis 
spectra of the neutral, polaronic and bipolaronic states. In-situ 
spectroelectrochemical studies of p-doped PPV have identified 
the polaronic and bipolaronic states of this polymer.1213 

Unfortunately, spectroelectrochemistry of conducting polymers 
is complicated by overlapping spectra for the different charge- 
carrying defects possible in each material. Factor-analysis- 
based approaches to interpretation such as iterative target 
transformation factor analysis (ITTFA) have the power to 
provide insight into the number of species present, and how 
their concentrations vary with time and potential. However, to 
date factor analysis has been used only once to deconvolute 
spectroelectrochemical data: by Keesey and Ryan who studied 
the reduction of E. coli sulfite reductase hemoprotein and a Mo- 
Fe-S cluster.14 In this report, we explore the spectroelec- 
trochemistry of a PPE-based polymer using ITTFA. Using this 
approach, we obtain the distinct optical spectra of two charged- 
defect states that we assign as the polaron and bipolaren states 
on the basis of their potential and doping level dependence. 

Experimental 

Thin films of 1 and 2 on indium tin oxide (ITO)-coated slides 
were used for a spectroelectrochemical study. 

The polymers 1 and 2 were synthesized according to a 
literature procedure15. Thin films of 1 and 2 were made by spin- 
coating 150 u.1 of a 25 mg ml-1 chloroform solution of the 
polymer onto ITO at a speed of 770 rpm for 50 s. In some cases, 
the film was removed from a portion of the ITO coating with a 
chloroform-soaked swab prior to making electrical contact with 
an alligator clip. In other cases, no cleaning protocol was used 
and a direct connection via an alligator clip was made through 
the film. No difference in the behaviors of these connection 
types was observed. Film thickness was determined using 
contact-mode atomic force microscopy by scoring the polymer 
film with a blade and measuring step heights from the top of the 
polymer film to the substrate. 

The experimental instrumentation for the electrochemical 
set-up consisted of an EG&G PARC Model 263 potentiostat, 
connected with a GPIB interface (National Instruments) to a 
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Gateway 2000 Model P5-60 computer with EG&G PARC 
Model 270 Research Electrochemistry Software. Cyclic vol- 
tammetry (CV) of the films was performed with 0.1M 
tetrabutylammonium perchlorate (TBAP) supporting electro- 
lyte in dichloromethane (DCM). DCM was obtained as reagent- 
grade from Fischer Scientific and was used without further 
purification. The polymer coated ITO was used as the working 
electrode in a standard 3-electrode electrochemical set-up, 
platinum was the counter electrode and the potential was 
measured against a platinum wire pseudo-reference electrode. 
Ferrocene was used as a standard for oxidation potential. All 
experiments were performed in air. During electrochemical 
studies outside the spectrometer, the solvent was purged with 
nitrogen gas. 

Spectroelectrochemistry was carried out using a quartz 
cuvette as an electrochemical cell. A Hewlett Packard UV- 
visible spectrometer was used. The 'Automation' option of the 
chemstation software enabled spectra to be recorded at 30 s 
intervals. Spectral data were exported as ASCII files I or further 
use. Continuous nitrogen purging was not possible during these 
studies, but thoroughly de-aerated solutions were prepared and 
transferred to the spectrometer for immediate use. 

Results and Discussion 

Polymers 1 and 2 showed identical electrochemical behavior. 
Typical cyclic voltammograms of 1 in a 0.1 M TBAP-DCM 
electrolyte solution at a sweep rate of 50 mV s_' and at different 
potential limits are shown in Fig. 1. When the upper voltage 
limit is 1.45 V vs. Fc/Fc+ an anodic peak is se.' n at l.l'JV vs. Fc/ 
Fc+. There is also a small anodic peak at 0.59 V vs. I c/Fc+. One 
reduction peak is observed at —0.26 V vs. Fc/Fc+. This redox 
reaction is accompanied by a reversible color change — the 
polymer originally has a yellow-green color. At applied 
potentials above 1 V this changes to a deep red color, which 
persists until the applied potential is cycled back past —0.26 V 
vs. Fc/Fc+, where the original yellow-green color reappears. 

However when the upper voltage limit is set at 0.85 V vs. Fc/ 
Fc+ a new cathodic peak emerges. The small oxidation peak 
observed at 0.59 V vs. Fc/Fc+ exhibits a corresponding 
reduction at 0.54 V vs. Fc/Fc+. In this case there is a color 
change to brown, which is reversible upon cycling past the 0.54 
V cathodic peak. No cathodic peak at —0.26 V vs. Fc/Fc+ is 
observed in this case. At an intermediate voltage limit in the 
region of 1.1 V vs. Fc/Fc+ both cathodic peaks are observable on 
the cathodic sweep, but the magnitude of the 0.54 V cathodic 
peak decreases relative to its peak height at the 0.9 Y limit, and 
the red color persists until cathodic cyclic past 0.26 V vs. Fc/ 
Fc+. 

It seems most probable that the first peak at 0.59 V vs. Fc/Fc+ 
is due to polaron (radical cation) formation, which is initially 
reversible. The second oxidation at 1.19 V vs. Fc/Fc+ induces 

conversion of polarons to bipolarons, a process that is 
irreversible in that the bipolaron cannot be reduced to the 
polaron. Therefore, although the overall oxidation reaction can 
be reversed, the process is thermodynamically irreversible, at 
least under the conditions of our experiment. The redox 
reactions of dialkyl(paraphenyleneethynylene) can be summa- 
rized as follows: PPE — e~ «-> PPE°+, reversible radical cation 
formation; PPE°+ —> PPE2+, radical cation oxidation to form 
bipolaron, irreversible; PPE2+ + 2e_ -» PPE, bipolaron 
reduction to neutral polymer. Upon continuous cycling of the 
polymer between 0.34 and 0.85 V vs. Fc/Fc+ there is no decrease 
in observed current with cycle number, subsequent cyclic 
voltammograms are superimposable. Upon continuous cycling 
of the polymer between —0.5 and 1.35 V vs. Fc/Fc+, however, 
there is a sharp decrease in observed current with cycle number. 
This occurs for both the anodic and cathodic peaks although the 
qualitative behavior of the films remains constant and the 
corresponding color change remains. 

We made an effort to determine n, the number of C104
_ ions 

incorporated into the polymer matrix on polaron formation and 
on complete oxidation. To do this, a number of assumptions 
were made. It was assumed that the molar absorptivity of the 
polymer in solution is equal to that of the polymer in the film. 
The measured absorbance per unit film thickness was used to 
calculate the concentration of polymer in the film. The absolute 
absorbance of the film was then used to determine the number 
of polymer molecules in the film. Chronoamperometry was 
used to determine the total number of electrons removed from 
the film. A value of n at an applied potential of 1.2 V vs. Fc/Fc+ 

of between 20 and 30 was calculated, i.e. an electron is removed 
from the polymer chain every 3 to 4 repeat units, near 100 C 
cm-3. Further increasing the applied potential to 1.5 V vs. Fc/ 
Fc+ does not affect the n value obtained This is comparable to 
the faradic charge of 120 C cm-1 reported for fully oxidized 
polypyrrole films used as battery electrodes "' The variation in 
n values between experiments was attributed to inhomogeneity 
of the spin-coated polymer film. Therefore the overall electro- 
chemical reaction can be defined as PPE + 20 CIO4- 

«-*[PPE20+C104-2o] + 20e~. For polaron formation only, at 
applied potentials of 0.6 V vs Fc/K\ n was calculated to be 
approximately 1. 

The observed decrease in current upon polaron formation is 
attributed to polymer delamination upon doping, leading to 
decreased polymer concentration in contact with the electrode. 
This delamination may be the result of decreased polymer 
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Fig. 1 Representative cyclic voltammogram lot IIK- ovidjuon of 1 at 50 
mV s_1 in a 0.1 M TBAP-DCM solution, stvmim? the effect of upper 
potential limit on the cyclic voltammogram characteristics. I'eak A: Neutral 
PPE oxidation to form polaron. Peak B: Polaron reduction. Peak C: Polaron 
oxidation to form bipolaron. Peak D: Bipolaron reduction 10 neutral 
polymer. 
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flexibility coupled with swelling/shrinkage during heavy dop- 
ing. 

The spin-cast polymer films adhere well to the 1TO substrate. 
Atomic force microscopy (AFM) results show that polaron 
formation at low doping levels does not significantly change the 
polymer morphology. At this low doping level, delamination 
does not occur and therefore current peak heights do not change 
upon continuously cycling to the point where only polarons are 
formed. After heavy doping, however, it was observed that the 
films crack and shrink and are more easily removed from the 
underlying ITO. A possible explanation for delamination is that 
upon oxidation the large concentration of positive defects (at 
least one per 4 polymer repeat units) leads to structural 
perturbation of the polymer, such as increased planarization. 
The irreversibility of the radical cation to bipolaren formation 
may also be due to these inferred structural changes at high 
doping levels. Some evidence exists to support the notion of 
doping-induced micro- and nano-structural changes in polymer 
morphology. For example, the decreasing rate of polaron decay 
to bipolaren with increasing oxidation level in the conducting 
polymer polybithiophene has been attributed in the scientific 
literature to increasing polymer stiffness upon oxidation.17 Our 
own AFM studies show that, while polaron formation does not 
significantly affect polymer morphology, bipolaren formation 
at high doping does. We have also performed force modulation 
microscopy (FMM) on the PPE films. Results of FMM studies 
indicate that the fully doped polymer is much more rigid than 
the undoped polymer.18 

Spectroelectrochemistry 

Cyclic voltammetry was carried out on 1 at 1 mV s~' and the 
UV-visible spectrum of the film was collected at 30 s intervals, 
i.e. at potential intervals of 30 mV, from 0.34 to 1.43 V vs. Fc/ 
Fc+ on the forward sweep. The cyclic voltammogram recorded 
during the experiment was not perturbed by the optical 
measurement. As before, two peaks appeared on the forward 
sweep: polaron formation at 0.6 V vs. Fc/Fc+ and bipolaren 
formation at 1.19 V vs. Fc/Fc+. The polymer film was 
considerably delaminated at the end of the experiment. The 
degradation was probably enhanced by the relatively long time 
the doped film was in solution. 

The spectra obtained during the electrochemistry are shown 
in Fig. 2. They correlate to spectra obtained timing preliminary 
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Fig. 2 The 37 spectra obtained during a linear sue 
mV s~'. Spectra were taken at 30 mV intervals 
potentials of 0.352 V, 0.382 V 1.432 V vs. Fe, 
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work, where chronoamperometry was used to apply a fixed 
potential to the polymer and UV-visible spectra were obtained 
in this potentiostatic manner.19 

The undoped polymer film has absorption maxima at 404 nm 
(3.07 eV) and 440 nm (2.82eV). In solution, the phenyl rings of 
PPEs are known to be relatively rotationally free. The 404 nm 
peak is the only one observed for polymer in solution, and is 
attributed to the relatively short conjugation lengths that exist 
due to rotational motion. The peak at 440 nm appears only in 
films. This latter peak has been attributed to an intrachain effect 
in which spin-coating leads to increased planarization and thus 
improved conjugation with a lower band-gap.20 

At an applied potential of 0.65 V vs. Fc/Fc+, a new absorption 
centered at 645 nm (1.92 eV) appears and reaches a maximum 
absorption as a function of potential at approximately 0.9 V. 
This absorption is assigned to polaron formation. At potentials 
above 0.76 V vs. Fc/Fc+, a stronger, broad peak with Xmx = 545 
nm (2.27 eV) appears. Both peaks coexist in the 0.7 to 1 V 
range. The 540 nm peak reaches a maximum with respect to 
potential at 1.07 V vs. Fc/Fc+, at which potential the 645 nm 
peak has disappeared. The 540 nm absorbance is assigned to the 
bipolaren defects in the polymer. The peaks at 404 nm and at 
440 nm diminish until -1.1 V vs. Fc/Fc+. As the applied 
potential is increased the peak at 404 nm maximum undergoes 
a hypsochromic shift to 379 nm. 

Iterative target transformation factor analysis 

(ITTFA) was carried out using a modified version of a Matlab 
(version 5.1.0, Math Works, Inc.) program written by Paul 
Gemperline at East Carolina University.21. ITTFA is a powerful 
mathematical tool to deconvolute spectra with broad over- 
lapping spectral features. ITTFA works by finding two factors 
Cpred and EprCd that are related to the original data matrix, A, 
via: A = CpraiEprcä. Transformation analysis is carried out by 
finding a transformation matrix, M, such that Cpred = UM where 
Cpr(,d is the prediction of the new Ordinate system. The 
eigenvectors £prcd of the new coordinate system are found from 
the inverse of M. £prcd = M-'SV?. Target transforms are 
performed by selecting test vectors for M and minimizing the 
difference between Cprcd and C,CS|. 

Principal component analysis (PCA) was carried out to 
identify the number of significant factors. PCA is a multivariate 
dimension reduction method which takes m spectra with n 
independent variables and produces a new set of orthogonal 
eigenvectors that are a linear combination of the original 
variables. Principal component one describes the greatest 
variability in the data set. Subsequent PCs, ranked by decreas- 
ing eigenvalue, describe successively less variability until only 
noise is being accounted for. In our example the number of 
significant factors was found to be 4, see Fig. 3. 98.25% of the 
total cumulative variance was accounted for by these four 
PCs. 

The data input to the ITTFA program was the 37 X 750 
matrix of absorption data exported from the Varian software, 
where the 37 rows represent complete spectra at individual scan 
numbers or applied potentials and the 750 columns represent 
individual wavelengths from 351 to 1100 nm. The data was not 
preprocessed. The result of the iteration was two matrices, 
called [cpred] and [epred]. [cpred] is a 37 X 4 matrix which 
represents the concentration profile with respect to applied 
potential for each of the 4 species identified, [epred] is a 4 X 750 
matrix which represents the spectra of these 4 components. 

The ITTFA program allows certain variables to be specified, 
namely the number of components to identify, the convergence 
tolerance and the maximum number of iterations. From PCA it 
was known that four species were present. ITTFA is a 
convergent program so it is necessary to choose a maximum 
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number of iterations greater than the number needed to 
converge. The convergence tolerance has a large effect on the 
number of iterations. 

The deconvolution yielded four separate factors, correspond- 
ing to the main species present during the positive sweep. Fig. 
4 shows the deconvoluted spectra and Fig. 5 shows the 
concentration profile of the four species. These are the results 
obtained when the convergence tolerance was selected as 
0.0004. 71 iterations were needed to reach convergence in this 
case. 

The deconvolution shows that the partially-planarized neutral 
polymer in the film is the only species present initially, 
consistent with expectation. The production of polarons begins 
to occur at 0.55 V vs. Fc/Fc+ with a maximum at 0.89 V vs. Fc/ 
Fc+. Polaron formation is characterized by the emergence of an 
associated spectral peak at 650 nm. The neutral polymer peaks 
at 404 nm and 440 nm remain, but are reduced in magnitude. 
The fact that the 440 nm 'planarization' peak remains at these 
potentials lends credence to the claim that polaron formation 
does not significantly alter the polymer morphology. At 0.77 V 
the spectrum of a third species, the bipolaron, emerges, showing 
a characteristic broad band centered at 550 nm. This absorption 
reaches a maximum at 1.07 V vs. Fc/Fc+. The 440 nm peak due 
to planarized regions of polymer disappears completely. The 
404 nm absorbance characteristic of the dissolved polymer with 
short conjugation lengths has decreased hugely. This agrees 
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Fig. 3   Principal component analysis. 

with our chronoamperometry data. If on average each polymer 
chain has lost 20 electrons then it is to be expected that there will 
be an insignificant number of neutral segments remaining, and 
hence insignificant absorption at 404 and 440 nm. 

Species 4 emerges at potentials above 0.9 V vs. Fc/Fc+. The 
main absorbance for this species is at 380 nm. From both cyclic 
voltammetry and chronoamperometry we know that there is no 
electrochemical reaction occurring on the positive sweep 
following bipolaron formation and therefore the emergence of 
this species is not fully understood. We know that once the 
polymer films are freed from an applied potential, they 
gradually lose their red coloration, possibly due to reaction with 
atmospheric gases. The fact that species 4 shows both bipolaron 
and neutral characteristic spectra may mean that it was doped 
but is unstable in solution and is converting back to the 
insulating state. Another possible explanation is that after 
formation, the bipolaron defects undergo a further potential- 
dependent structural relaxation to another form with distinctive 
spectroscopy. 

The result of the deconvolution were found to be affected by 
the tolerance limit. Decreasing the tolerance limit increases the 
number of iterations required to reach convergence. For 
example decreasing the tolerance limit by a factor of 10 from the 
example discussed above, to 0.000004, increases the number of 
iterations required to reach convergence to 207. This also 
affects the relative height of the 380 nm peak of species 4, which 
increases with decreasing tolerance. Conversely, raising the 
tolerance to 0.0004 lowers the amount of iterations needed to 21 
and affects the spectrum of species 3 in that a 380 nm peak is 
also present in this case. The spectra of species 1 and 2 are not 
affected by these factors. This indicates that species 3 and 4 are 
not well separated by ITTFA. 

To summarize, the ITTFA concentration profile shows that 
with increasing applied potential PPE is oxidized to form 
polarons, which initially are the only charged species present. 
Further increasing the applied potential leads to bipolaron 
formation. There is a potential window in which both coexist, 
but at 1.07 V vs. Fc/Fc+ the bipolaron reaches a maximum 
concentration and all of the polaron has been converted. This 
corresponds to the PPE cyclic voltammetry, where the current 
maximum for bipolaron formation is 1.19 V vs. Fc/Fc+. 

Without deconvolution of the data it would appear that the 
fully p-doped polymer consists of both neutral and bipolaron 
segments, with a hypsochromic shift of the 404 nm to 380 nm. 
Using ITTFA to deconvolute the spectra obtained during 
dialkylpoly(paraphenyleneethynylene) oxidation enables us to 
obtain the spectra of the polymer polaron and bipolaron 
separately and to show that there are clear regions of stability for 

— Species 1 
-  Species2 
 Species3 
■ ■  Species 4 

1   I   '   '   '   ■   1   ' 
500 600 
Wavelength/nm 

n 
700 

Fig. 4 Deconvoluted spectra showing the four significant species 
identified by the ITTFA program, where species 1 is the neutral polymer, 
species 2 is the polaron species, species 3 is the bipolaron species and 
species 4 is the final delaminated species. 
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each species. We find that the species only coexist over narrow 
ranges of potential. Iterative target transformation factor 
analysis also shows the presence of a fourth species, closely 
related to the bipolaron, which was not observable without 
spectral deconvolution. 
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Field applications of stand-off sensing using visible/NIR 
multivariate optical computing 
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ABSTRACT 

A novel multivariate visible/NIR optical computing approach applicable to standoff 
sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is 
to develop environmental or counter-terrorism sensors for chemicals such as 
organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared 
spectral region. The mathematical operation that characterizes prediction of properties via 
regression from optical spectra is a calculation of inner products between the spectrum 
and the pre-determined regression vector. The result is scaled appropriately and offset to 
correspond to the basis from which the regression vector is derived. The process involves 
collecting spectroscopic data and synthesizing a multivariate vector using a pattern 
recognition method. Then, an interference coating is designed that reproduces the pattern 
of the multivariate vector in its transmission or reflection spectrum, and appropriate 
interference filters are fabricated. High and low refractive index materials such as ND2O5 
and Si02 are excellent choices for the visible and near infrared regions. The proof of 
concept has now been established for this system in the visible and will later be extended 
to chemicals such as OP compounds in the near and mid-infrared. 

Keywords: Sensors, optical computing, multivariate analysis, visible/NIR, remote 
sensing, standoff sensing 
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1.INTRODUCTION 

A novel multivariate visible/NIR optical computing approach has been established in the 
visible spectral region based on a theoretical assessment performed in 1998.[1] Spectra of 
mixtures of 4 porphyrins in solution were used as examples. The long-term objective is to 
develop environmental or counter-terrorism sensors for field use by the military for 
chemicals such as organophosphorus (OP) pesticides or OP chemical warfare simulants. 
These sensors would be used in the near infrared (NIR) or, after instrumental 
improvements and substitution of appropriate infrared optical materials, in the mid-IR. 

After the acquisition of appropriate spectra, chemometric approaches are used to extract a 
spectral pattern (or regression vector) that is correlated to the property of interest but 
orthogonal to interferences. The magnitude of the spectral pattern is calculated by taking 
the direct "scalar" product between a spectrum and the predetermined regression vector. 
In this paper we used visible transmission spectra of 4 porphyrins, treating one as an 
analyte and three as interferents as proof of concept for chemicals of military interest in 
the near and mid IR spectral region. Porphyrin solutions were prepared using mixtures 
generated with random numbers to make sure that the components were varied 
independently. The resulting transmission spectra were spectrally corrected and used to 
calculate a regression vector and to design an appropriate target filter. 

The all-optical approach we describe centers on the production of an interference coating 
whose transmission spectrum incorporates features of the spectral regression vector. [2] 
The concept of using interference coatings for chemical measurement vectors in 
spectroscopy was pioneered by Bialkowski more than a decade ago. [3] The interference 
filter was produced in house using reactive magnetron sputtering of multilayers of niobia 
and silica (high and low refractive indices, respectively) using software in house 
software. 

The resulting interference filter produced in-house is used as a beam-splitter in a 
prototype, rugged, compact field instrument shown in Figure 1. In this sensor the 
difference between the transmitted and reflected beams will be proportional to the 
regression vector. The device containing the actual filter was tested with random 
mixtures of porphyrin solutions. The random error of prediction for the experiments on 
the actual filter value was found to be greater than the theoretical error for that filter 
design, as expected. The error was still much less than would have been expected from a 
conventional notch filter covering the same spectral region. 

2. EXPERIMENTAL 

The experimental approach and apparatus have been described elsewhere. Briefly, a 
Hewlett-Packard UV-Vis diode array spectrophotometer Model 8543 was used to collect 
transmission and absorption data on quaternary porphyrin mixtures for this study. A 
compact prototype field instrument (Figure 1) was designed and constructed to show 
proof of concept in the visible using Linos Photonics (Milford, MA) optical components. 

106 ProcSPIE Vol. 4199 

35 



The characteristics of bandpass filters, lamps and detectors in the prototype instrument 
were used to convert transmittance spectra of calibration samples into detector spectral 
responses. 

A. 6V/6W tungsten filament lamp with 1 x 1.2mm active filament area was used as a light 
source in the prototype instrument. The spectral radiance of the lamp was measured in 
watts per (steradians x cm2 x nm), with a charge coupled device (CCD) spectrometer 
system consisting of a Chromex 250IS spectrometer with 300 grooves/mm grating and a 
Princeton Instruments 1100 x 300 pixel CCD camera, (Model TE/CCD-1100-PE). The 
input optics on the spectrometer system are shown in figure 1. For these measurements, 
the operating voltage the lamp was fixed at 5.76V. The wavelength range of the CCD 
camera/spectrometer system was calibrated with a standard mercury Pen-Ray lamp and a 
standard neon lamp. The spectral radiance of the lamp under these conditions was 
calibrated against an OL series 455 integrating sphere standard lamp (Optronic 
Laboratories Inc.) operated under standard conditions. 

The two Si photodiode active detectors were type BPW21 with a sensitive area of 2.7 x 
2.7 mm2, spectral range 320-820 nm and radiance sensitivity at the peak wavelength (550 
nm) of 3.8 V/nm. The relative signal intensity (detector response) versus wavelength was 
estimated from a Linos Photonics data sheet with values measured at 25 degrees and 12 
V DC supply voltage. 

The filter bandpass set used to isolate the region from 400 nm to 650 nm consisted of two 
3 mm thick Schott glass filters (Duryea, PA) BG-39 and DG-400. 

The quaternary porphyrin mixtures for testing multivariate optical element (MOE) filter 
design were prepared from four uroporphyrins I (free base or H2, Cu (II), Ni (II), and Sn 
(W)Ch) dissolved in IM ammonium hydroxide. These uroporphyrins were obtained 
from the Porphyrin Products division of Frontier Scientific Inc. (Logan, UT). The stock 
solutions were H2at 106, Sn (rV)Cl2 at 57.4,Cu at 62.6, and Ni at 56.1 micromoles, 
respectively. Random numbers were generated and applied to stock solutions of the 
porphyrins with dilution so that the relative concentrations of the four porphyrins varied 
independently. The random numbers were also chosen to make sure that the 
transmittance spectra of the diluted mixtures were between 30% and 70%. Forty 
quaternary porphyrin solutions were prepared and their transmission spectra were 
measured. These spectra after appropriate corrections were used to design the filter. 
When the filter was designed and produced, 20 additional solutions were prepared in a 
similar manner. Ten of these were used to calibrate the instrument, and 10 were used as a 
validation set. The Cu uroporphyrin was selected as the analyte and the other three 
uroporphyrins were regarded as uncorrelated interferents whose concentrations varied 
randomly. 

The MOE filter was manufactured via reactive magnetron sputtering (RMS). The 
sputtering system (Model CV 5.1) was custom-manufactured by Corona Vacuum Coaters 
of Vancouver, B. C. Operating at room temperature, the system utilizes a 40 kHz mid- 
frequency RF supply to power four water-cooled planar magnetrons positioned in pairs 
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around a drum that rotates about a horizontal axis. The coating chamber contains 4 inch x 
10 inch magnetron targets, two containing niobium (99.95 %, high index) and two 
containing silicon (99.9999% pure, low index). Each magnetron target is powered at 
about 0.7 kW, although the power is varied during deposition for fine control over the 
deposition rate. The RMS process was used to deposit alternating layers of niobium 
pentoxide (ND2O5) and silicon dioxide (SiC^) films by reaction with oxygen in the gas 
mixture. Deposition was carried out on a 1-inch BK-7 glass substrate according to 
prescribed multilayer coating thicknesses. 

TFCalc, a commercial software product from Software Spectra Inc. (Portland, OR), was 
used to synthesize multilayer thin film designs to match a spectral target. An in-house 
thin film design program written in the MATLAB programming environment 
(MathWorks Inc., Natick MA) was used to design simpler multilayer structures for 
chemical prediction. The details of the chemometric/software approach will be reported 
elsewhere. [4] 

3. RESULTS AND DISCUSSION 

Figure 1 shows the experimental setup for implementing the single filter design in a 
simple transmission measurement. In this system, a spatial filter and collimating lens are 
used to restrict the angular dispersion of light reaching the bandpass filter set and then 
through a 10 mm I.D. fused silica cell containing a porphyrin mixture solution. The light, 
after passing through the sample cell, then hits the multivariate optical element (MOE) 
interference filter employed in a beam splitter arrangement at approximately 45 degrees 
with part of the light being reflected to a detector and part being transmitted to a similar 
detector. 

The spectrum of the 45-degree MOE is designed to be 

T(X)=0.5+/-L(X), 

where T is the filter transmittance function and L. The reflectance may be represented by 
R (wavelength) = 0.5 -/+ L (wavelength). The difference between these values is 
proportional to the spectral regression vector, while the sum of the two is independent of 
the spectral vector. 

Figure 2 shows the transmission spectra for a series of 40 mixtures of these porphyrins, 
mixtures in which the concentration of the 4 porphyrins are varied independently of one 
another based on a random number generator. Cu(II) uroporphyrin I was chosen as the 
analyte and the other 3 uroporphyrins were taken as interferents. Before calculation of a 
regression vector, the transmission spectra are converted into system units by measuring 
the spectral radiance of the light source to be used for illumination of the sample, the 
transmittance of a spectral bandpass filter set, and the spectral sensitivity of the detector 
selected for the measurement. The product of these factors as described elsewhere with 
the sample transmittance spectra gives the system-corrected spectra shown in Figure 3. 
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An interference filter was designed using our in-house sottware to minimize mc ««uu«u 
error of prediction (SEP). Figure 4 shows the transmission spectra of the actual filter 
compared with the theoretical filter transmission spectra. The theoretical SEP for the 
system, assuming a filter with the exact spectrum of the theoretical filter, is 0.59 pM. We 
should expect some degradation in the SEP as a result of spectral mismatch (reference 4 
describes how spectral tolerance in a coating is obtained from the spectral variance). 

We used 10 uroporphyrin mixtures as a test set to determine the optimum value of C in 
the following equation: Pred = k (T-CR). C in this equation is a correction for the 
differing responsivities of two different detectors due to factors such as gam resistor 
variation, etc. k in this equation is the gain factor for prediction (Pred). 10 more 
uroporphyrin samples were used to validate the system. Figure SA shows the actual 
concentration of Cu(II) uroporphyrin I as a function of the measured value of T-CR for 
the data set used to determine C, while figure 5B shows the validation set. The calculated 
SEP from these data is 0.86 uM, only slightly worse than the theoretical best value oi 

0.59. 
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Figure 1: Prototype field Instrument utilizing multivariate optical element (MOE) 
interference filter as beam-splitter. T = transmittance, R = reflectance, L = spectral 
vector 
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Figure 2: Transmission spectra of 40 uroporphyrin mixtures in IM NH4OH 
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Figure 3: Detector response (corrected transmission spectra) of uroporphyrin mixtures. 
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Comparison of the theoretical filter »pectrum and the experimental filter 
spectrum for the quaternary porphyrln mixture MOE 
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Figure 4: Comparison of the theoretical filter spectrum and the experimental filter 
spectrum for the quaternary porphyrin mixture multiple optical element (MOE) filter. 
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Design and Testing of a Multivariate Optical 
Element: The First Demonstration of Multivariate 
Optical Computing for Predictive Spectroscopy 
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A demonstration of multivariate optical computing is 
presented using binary dye mixtures consisting of Bis- 
marck Brown and Crystal Violet. Bismarck Brown was 
treated as the analyte, while Crystal Violet was treated as 
a random interfering species. First, a multilayer multi- 
variate optical element (MOE) for the determination of 
Bismarck Brown was designed using a novel nonlinear 
optimization algorithm. Next, the MOE was fabricated by 
depositing alternating layers of two metal oxide films 
(ND2O5 and SiOz) on a BK-7 glass substrate via reactive 
magnetron sputtering. Finally, the MOE was tested on 39 
binary dye mixtures using a simple T-format prototype 
instrument constructed for this purpose. For each sample, 
measurements of the difference between transmittance 
through the MOE, and the reflectance from the MOE were 
made. By setting aside some of the samples for instrument 
calibration and then using the calibration model to predict 
the remaining samples, a standard error of prediction of 
0.69 //M was obtained for Bismarck Brown using a linear 
regression model. 

Multivariate calibration is an established tool in chemometrics 
for the correlation of a physical or chemical property of interest 
to information spanning multiple wavelength channels in optical 
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spectroscopy.1"3 The conventional application of this tool in 
chemical analysis entails first the acquisition of optical spectra in 
the appropriate wavelength region (typically from the ultraviolet 
to the mid-infrared). Next, chemometric tools are used to extract 
a spectral pattern (the regression vector) which is correlated to 
the property of interest but orthogonal to interferences.'1 Prediction 
of the property in an unknown sample is then carried out by 
determining the magnitude of the spectral pattern in the optical 
spectrum of the sample. More specifically, the magnitude is 
calculated by taking the inner product of the regression vector 
and the optical spectrum of the unknown sample. A major 
drawback in the widespread use of multivariate calibration, 
especially for field applications, is its dependence on expensive 
and bulky laboratory-type equipment for data acquisition and 
analysis. 

A recent publication from our laboratory5 addressed from a 
theoretical standpoint the feasibility of using optical computing 
in predictive spectroscopy to simplify and harden the apparatus 
necessary for chemical prediction. The first reports of a related 
hypothetical optical approach to multivariate chemical measure- 
ment were those of Bialkowski.6 The use of a single multivariate 
optical element (MOE) in a beam splitter configuration has also 

(1) Aust, J. F.; Booksh. K. S.: Myrick, M. L. Appl. Spectrosc. 1996, 50. 382- 
387. 

(2) Thomas, E. V.; Haaland, D. M. Anal. Chem. 1990, 62. 1091-1099. 
(3) Ruyken, M. M. A.; Visser, J. A.; Smilde, A. K. Anal. Chem. 1995. 67. 

2170-2179. 
(4) Martens, H.: Naes. T. Multivariate Calibration-. John Wiley & Sons: New 

York, 1989: Chapter 3. 
(5) Nelson, M. P.: Aust. J. F.: Dobrowolski. J. A.: Verly. P. C; Myrick, M. L. 

Anal. Chem. 1998, 70. 73-82. 
(6) Bialkowski, S. Anal. Chem. 1986. 58. 2561-2563. 
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MOE 

Figure 1. Schematic of a multivariate optical computing system tor 
the measurement of BB in a binary dye mixture. Key: MOE, 
multivariate optical element; SC, quartz sample celt; OB, optical block; 
BP, band-pass filter set consisting of two 3-mm Schott glasses; CL, 
achromatic collimating lens; L, tungsten halogen lamp; P, pinhole; 
D1/D2, Si photodiode detectors for light radiation transmitted through 
and reflected from the MOE; F1/F2, focusing lens. 

been described for the same purpose,7 a permutation most similar 
to that proposed by Ryabenko and Kasparov.8 The all-optical 
approach proposed by our laboratory differs from previous work 
by centering around the production of one or more optical 
interference coatings whose transmission spectra incorporate 
features of a spectral regression vector. Such interference filters 
based on multivariate spectroscopy will be referred to as MOEs. 
MOEs have never been demonstrated as a tool for actual chemical 
measurement, however. 

This report details the first demonstration of multivariate 
optical computing (MOC) using an MOE. Simple binary dye 
mixtures of Bismarck Brown (BB) and Crystal Violet (CV) were 
selected to design a MOE that would test the concept of all-optical 
prediction. The experiments reported below consist of several 
elements. First, the optical properties of all the pertinent compo- 
nents of a simple T-format spectroscopic system were evaluated. 
Second, spectra of a series of binary dye mixtures were recorded 
and converted to a spectral radiance scale for chemometricinter- 
pretation. Third, a theoretical design for a MOE suitable to this 
measurement was generated. Fourth, the MOE was fabricated 
in-house. Finally, the MOE was installed in our T-format instru- 
ment and measurements of calibration and validation samples 
were performed. 

EXPERIMENTAL SECTION 

Owing to the possible confusion between dimensions for 
wavelength and layer thicknesses, in the following we will 
uniformly employ the units "nanometer" for dimensions of 
wavelength and "angstroms" for units of film thickness. 

Demonstration of the MOC technique was carried out on a 
compact T-format instrument (Figure 1), which was constructed 
using Linos Photonics (Milford, MA) optical components. 

A 6-V/6-W tungsten filament lamp (Linos Photonics) with 1 x 
1.2 mm active filament area was used as a light source for the 
test instrument. The spectral radiance of the lamp was measured 

(7) Myrick. M. L. Soyemi, 0.; Karunamuni, J.; Eastwood, D.; Li, H.; Zhang. 
L.; Gemperline, P. Vib. Spectrosc., in press. 

(8) Ryabenko, A.; Kasparov. V. Pattern Recognit. Image Anal. 1991, 1, 347- 
354. 
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in W/sr-cm2-nm with a CCD spectrometer system consisting of 
a Chromex 250IS spectrometer with a 300 line/mm grating blazed 
at 500 nm and a Princeton Instruments 1100 x 300 pixel CCD 
camera, model TE/CCD-1100-PE. The input optics on the spec- 
trometer system were duplicates of the Figure 1 system. For these 
measurements, the operating voltage for the lamp was fixed at 
5.76 V. The wavelength range of the camera/spectrometer system 
was calibrated with a standard mercury pen lamp and a standard 
neon lamp. The spectral radiance of the lamp under these 
conditions was calibrated against an OL series 455 integrating 
sphere calibration standard lamp (Optronic Laboratories Inc.) 
operated under standard conditions. 

The two Si photodiode active detectors were type BPW21 
(Linos Photonics) with a sensitive area of 2.7 mm2, spectral range 
of 320-880 nm, and radiant sensitivity at the peak wavelength 
(550 nm) of 3.8 V/mW. The relative spectral sensitivity of the 
detector wavelength was estimated from a Linos Photonics data 
sheet giving values measured at 25 °C and 12-V dc supply voltage. 

A band-pass filter set was used to isolate the spectral region 
between 400 and 650 nm in which the visible absorbances of the 
two dyes are found. The band-pass set consisted of two 3-mm- 
thick Schott glass filters (Duryea, PA) BG-39 and GG400. 

Water-soluble dyes obtained from Aldrich Chemical Co. The 
dyes were Bismarck Brown (A^ = 457 nm, dye content 50%) 
and Crystal Violet (A^ = 590 nm, ACS reagent grade, dye content 
95%). Stock solutions in distilled water of BB at a concentration 
of 82.3 ^M and CV at a concentration of 37.7 ^M were prepared. 

Forty mixtures of BB and CV were prepared by dilution of 
the stock solutions in order to obtain data for multivariate 
calibration. These mixtures were made with known random 
concentrations of each dye to ensure that the concentrations of 
the two dyes were varied independently. The ranges over which 
the concentrations of BB and CV were varied were chosen to 
ensure that the minimum transmittance of the diluted mixtures 
in the 400-650-nm window were between 30 and 70%. BB was 
selected as the analyte because the spectrum of CV was an 
interference at all wavelengths over which BB absorbed. CV was 
treated as an uncorrelated interference. Optical spectra were 
recorded on a Hewlett-Packard UV-visible diode array spectrom- 
eter (model 8543). The samples were measured in a 1-cm fused- 
silica cell (Starna Cells Inc., Atascadero, CA). 

Following data collection and radiometric corrections for lamp 
intensity, detector response, and band-pass, design of MOE 
coatings was performed in two different ways. First, a spectral 
vector based on a principal components regression (PCR) model 
with four components was defined, and an iterative spectral- 
matching synthesis was performed. This procedure used TFCalc, 
a commercial software product from Software Spectra, Inc. 
(Portland, OR). The second approach began by synthesizing a 
crude filter design based on spectral matching to the PCR vector. 
The result of the crude spectral match was then used to initialize 
a nonlinear least-squares optimization routine to produce the final 
filter design.9 The nonlinear least-squares algorithm was written 
in-house in the MATLAB programming environment. More detail 
is provided in the discussion below. 

(9)   Soyemi, O.; Gemperline, P. J.; Zhang, L.; Eastwood, D.; Li, H.; Myrick, M. 
L., in preparation. 
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Figure 2. Real refractive indices of Nb205 (solid line) and Si02 

(dashed line) deposited in the USC deposition chamber in the 
wavelength region between 400 and 600 nm as determined from 
variable-angle spectroscopic ellipsornetry. The left axis gives values 
for real indices. Imaginary refractive indices are indicated by + 
(Nb205) and o (Si02) on the right axis. 

The MOE was manufactured via reactive magnetron sputtering 
(RMS). Our sputtering system (model CV 5.1) was custom- 
manufactured by Corona Vacuum Coaters of Vancouver, BC. The 
system operates at room temperature and utilizes a 40-kHz 
midfrequency rf supply to power four water-cooled planar mag- 
netrons positioned in pairs around a drum that rotates about a 
horizontal axis. The coating chamber is 55.9 cm in diameter and 
50.8 cm deep and contains 10.1 cm x 25.4 cm magnetron targets, 
two containing niobium (99.95% pure, high index) and two 
containing silicon (99.9999% pure, low index). Each magnetron 
target is powered at ~0.7 kW, although the power is varied during 
deposition as one method of controlling deposition rate. The RMS 
process was used to deposit alternating layers of niobium pent- 
oxide and silicon dioxide films by reaction with oxygen in the 
gas mixture. MOE designs require accurate knowledge of the 
optical constants of the coating materials. Figure 2 shows 
experimental measurements of the real and imaginary refractive 
indices of ND2O5 and SiÜ2 deposited in our chamber as determined 
by variable-angle spectroscopic ellipsornetry. 

The MOE tested here was fabricated on a 2.54-cm BK-7 glass 
substrate. Layer deposition was optically monitored online with 
a 1200 line/mm grating monochromator (model 9030, Sciencetec, 
London, ON, Canada) blazed at 250 nm. Light detection was 
achieved using a photomulüplier tube (model H5784-03, Hamamat- 
su, Japan). Visible light was obtained from a tungsten filament 
lamp (Gilway Technical Lamps, Waltham, MA). After MOE design 
was completed, the interference effects on transmission for each 
layer were computed at all accessible monitoring wavelengths. 
The system can currently monitor wavelengths between 420 and 
600 nm with ~l-nm resolution, and thus ~180 different "monitor 
curves" were produced for each layer. From the 180 possible 
curves, the optimum wavelength for monitoring and controlling 
the deposition of each layer was selected based on a set of criteria 
developed as a result of experience in our laboratory. Process 
control of the deposition process was performed with in-house 
software written in the LabVIEW 5.1 programming environment 
that operated in concert with the system control software provided 
by Corona Vacuum Coaters. The two software packages used the 

selected monitor curves to deposit each Filter layer as accurately 
as possible. More detail is provided in the discussion below. 

After the production of the MOE as described above, it was 
installed in the T-format instrument shown in Figure 1. A total of 
39 new samples of BB and CV were prepared using the random 
number generation described above. The difference between the 
signal due to light transmission through the sample followed by 
transmission through the optical filter (aligned at ~45°) and light 
transmission through the sample followed by reflection from the 
surface of the optical filter was measured for each sample. Twenty 
of these measurements were used for calibrating the instrument 
(determining the optimum relative gain factor for the two detec- 
tors, vide infra), while the remaining 19 samples were used to 
validate the calibration model. 

The relative gain factor described above is used to correct for 
the fact that the two detectors illustrated in Figure 1 have slightly 
different responsivities. These different responsivities can result 
from variance in the electronics of the two detectors or from other 
causes. When performing calculations using two detectors in our 
setup, we used a set of calibration samples to obtain measurements 
of transmittance and reflectance and then varied an empirical 
relative gain factor (called K in the discussion below) until the 
best correlation was obtained. This optimum gain factor was then 
used for future experiments. 

RESULTS AND DISCUSSION 
Single MOEs can be designed for chemometric prediction by 

using them in a beam splitter arrangement as shown in Figure 
I.7 Consider the optical transmission spectrum of an MOE to be 
T(A) = 0.5 + L(A), where L(A) is a spectral pattern that can also 
be represented in vector form as I. Assuming negligible absor- 
bance in the MOE, the difference between the intensity of light 
transmitted through the MOE (t • xj and light reflected from it 
(r • X|) is proportional to the scalar product of the vector 1 with 
the sample spectrum vector for the Ah sample, x, 

t • x,. - r • Xj = (t - r) • x,. = 

((0.5+ 1)- (0.5-1))- x, = lx, (1) 

In this measurement paradigm, 1 can be chosen to be proportional 
to a regression vector for a dependent sample variable. Because 
an MOE must have transmittance values between 0 and 1 
inclusive, 1 can have a magnitude no greater than 0.5 at any 
wavelength. For reasons of improving signal-to-noise ratio, the 
magnitude of 1 should be made as large as possible, subject to 
this limitation. Thus, the scalar product of this vector with the 
spectral vector is proportional to the value of the dependent 
variable (yj, with a proportionality constant we will represent by 
G/m (where m is the number of wavelength channels in the 
vectors) and an offset (off): 

y,= (C/ni)(l-x)+off (2) 

To achieve this, the spectrum of the 45° filter (the MOE in Figure 
1) must be designed such that an optimal multivariate regression 
vector can be derived from it that results in the best possible 
standard error of sample prediction (SEP). This regression vector, 
according to equation two, is the vector R = (G/m)I. 
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1. Selection of the Spectral Window and Spectral Mode. 
Although MOC should function in many linear types of spectros- 
copy, the most convenient and most basic multivariate measure- 
ment to set up is spectral absorbance. MOC should also function 
in any spectral range where good optical elements can be 
produced. However, in our laboratory, our experimental system 
lends itself most conveniently to measurements in the visible 
spectroscöpic region. This is because our MOE fabrication system 
is presently process-controlled using an optical monitor between 
420 and 600 nm. We elected to make measurements of mixtures 
of visible-absorbing dyes in the spectral window between ap- 
proximately 420 and 600 nm. 

Absorbance is nominally linear in concentration within the 
limits over which Beer's law holds. A radiometric measurement, 
however, is more directly related to transmittance of the sample 
than absorbance, and transmittance is logarithmically related to 
concentration. Nevertheless, a number of studies correlating 
single-beam and radiometric measurements to chemical properties 
using linear chemometric models have been performed with some 
success.10'11 In the limit of low absorbances, transmittance varies 
linearly with concentration; even for high absorbances, transmit- 
tance can be considered piecewise linear with concentration. Also, 
it has been shown that linear multivariate calibration methods such 
as PCR and partial least-squares regression (PLS) can satisfactorily 
model nonlinear responses by the inclusion of extra factors or 
latent variables in the calibration model.12 In the following 
discussion, the raw data from which an MOE is designed will be 
analyzed in both transmittance and absorbance modes for com- 
parison purposes to evaluate how the nonlinearity of transmittance 
with concentration affects the resulting prediction error. 

Since measurement by an MOE-based instrument is inherently 
radiometric in nature, a number of factors not normally considered 
in absorption measurements must be quantitatively evaluated. 
These include the following: (a) the spectral radiance of the 
source, (b) the transmittance of the samples, (c) the transmittance 
of any band-pass-selection filter, (d) the spectral sensitivity of the 
detector, and (e) the determination of the effective band-pass. 
Once these factors are known, the design of an MOE must be 
conducted via iterative thin-film synthesis subject to suitable 
starting, optimization, and stopping criteria. Following thin-film 
design, the precision of the fabrication process must be extreme. 
This requires a real-time monitoring system with suitable control 
software and accurate knowledge of the optical constants of 
materials involved in fabrication. Only after all these issues have 
been dealt with and concluded satisfactorily can the final system 
be evaluated. The following sections describe each of these basic 
considerations in detail. 

2. Radiometric Correction of Spectral Data. A realistic 
representation of the MOC instrument detector signal must 
include a convolution of the following radiometric quantities: the 
detector sensitivity, the spectral radiance of the source, the 
spectral band-pass, and the sample transmittance, all of which are 
functions of wavelength. Figure 3 shows the transmittance spectra 
of 40 mixtures of the two dyes in the region between 400 and 650 

(10) Ding, Q.: Small, G. W.; Arnold, M. A. Appl. Spectrosc. 1999, 53, 402-414. 
(11) Hazen, K. H.; Arnold, M. A.; Small, G. W. Anal. Chim. Acta 1998, 371, 

255-267. 
(12) Gemperline, P. J.; Long, J. R.; Gregoriou, V. G. Anal. Chem. 1991, 63, 

2313-2323. 
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Figure 3. Transmittance spectra of 40 binary mixtures of Bismarck 
Brown and Crystal Violet acquired on a UV-visible diode array 
spectrometer. 

nm (with concentration and wavelength ranges similar to those 
described above). 

In ordinary chemometric applications, out-of-band light can be 
eliminated by simply ignoring it. That is, light from the sample 
that is not in the range over which the chemometrics is performed 
does not have to be sampled. In the MOC measurement, however, 
band selection filters must be used to obtain this result. To ensure 
that light from outside the wavelength range of our targeted 
response window is not transmitted through the MOE onto the 
detector, a colored-glass band-pass filter set whose transmittance 
profile is shown in Figure 4A was used. 

Si photodiode detectors were selected for the dual-channel 
measurement system (Figure 1). Figure 4B shows a plot of the 
detector spectral sensitivity versus wavelength as estimated from 
a manufacturer-provided graph. The sensitivity reaches a maxi- 
mum at —550 nm and tapers off in the short-wavelength near- 
infrared region (not shown in the figure). 

A tungsten filament lamp was selected to serve as a light source 
for the measurement. These lamps are approximately blackbody- 
type emitters, with a spectral radiance maximum in the near- 
infrared. Figure 4C shows the spectral flux (in W/nm) of our 
tungsten filament lamp after passing through a 1-mm pinhole. The 
spectral flux profile was obtained by correcting the measured 
spectral radiance profile for the active solid angle (=(3/4) [f-ff) 
sr, where r and /are the radius and focal length of the focusing 
lens in the calibration system, respectively) and the active pinhole 
area (=xrp

2, where rp is the radius of the pinhole). 
Figure 4D shows the sample transmittance spectra corrected 

for the radiometric quantities described above, and they represent 
the spectral signal for each sample. 

3. MOE Design. An initial permutation of the MOC technique 
was proposed which involved the reproduction of the positive and 
negative lobes of the PCR regression vector on two separate filter 
elements.5 In this original conception, the light transmitted 
through two MOEs is separately detected to give a difference 
signal that is proportional to the sample concentration. The MOC 
configuration used in the study requires only a single MOE in a 
T-format configuration in which the MOE acts as a 45° beam 
splitter. Because of this, the MOE is designed to operate at this 
angle. Coatings at nonnormal incidence are prone to strong 
polarization effects. However, our calculations assumed completely 
unpolarized light since the light source for the instrument is an 
on-axis tungsten lamp. The algorithm thus designs a coating for 
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Figure 4. (A)-(C) are the characteristics of selected radiometric quantities for the T-format measurement system in Figure 1: (A) Band-pass 
of two 3-mm Schott glass filters versus wavelength, (B) detector sensitivity of two Si photodiode detectors versus wavelength, and (C) source 
radiance of the tungsten filament lamp versus wavelength, (d) shows the sample spectra in Figure 3 corrected for the three radiometric quantities 
in (A)-(C). 

light with equal magnitudes of 5- and /»-polarized light; our 
unpolarized light source provides such light to a very good 
approximation as long as the lamp is on the optical axis of the 
system. For the same reason, the detectors must be kept on axis 
as well. 

The corrected detector response profiles (corrected transmit- 
tance spectra) in Figure 4D were used for MOE design. Two 
possibilities exist for designing a viable MOE, both of which use 
iterative solving approaches. In each, calculation of the MOE 
spectrum from the design utilizes a matrix formulation that is 
based on the solutions to Maxwell's equations.13 The spectrum 
of a hypothetical coating is obtained and then evaluated subject 
to various criteria and then modified in ways that improve the 
criteria for evaluation. The criteria are the main points of 
differentiation between the two methods for design we will 
describe below. The first entails the transfer of the structure of a 
PCR regression vector onto a filter element via spectral matching 
using the established needle optimization technique.""16 The 
evaluation criteria in this case are "goodness of spectral match". 
The second method of MOE design referred to in the Experi- 
mental Section above uses a novel algorithm that synthesizes the 
best filter solution based on the constraint of minimizing the 
standard error in sample prediction. 

(13) Liddell, H. M. Computer-Aided Techniques for the Design of Multilayer Filters, 
Adam Hilger Ltd.: Bristol, U.K., 1983; Chapter 1. 

(14) Dobrowolski, J. A.; Lowe, D. Appl. Opt. 1978, 17. 3039-3050. 
(15) Tikhonravov, A. V. Vest. Mosk. University, Ser 3: Fii., Astron. 1982, 23, 

91-93. 
(16) Verly. P. G.: Tikhonravov, A. V.; Trubetskov. M. K. Appl. Opt. 1997. 36, 

1487-1495. 

Effective Band-Pass. As Figure 4A shows, the band-pass defined 
by our colored-glass filters is not clear-cut. The transmission band 
of the filters is far from a rectangular function of wavelength. An 
operational definition of the band-pass can be proposed, however, 
as the wavelength range over which the transmittance function 
of the MOE must be defined. In other words, outside the 
operational band-pass, all values of transmittance for the MOE 
are permissible because the variance of the signal strength is so 
small that it has a negligible impact on prediction. Determination 
of the operational band-pass limits has recently been examined 
in a discussion of spectral tolerance for MOE design.17 The lower 
and upper wavelength limits of the spectral band are given by 
solving the following equation: 

Kx = K.WR - *L) 
SEP' 

2{G/m) 
0 (3) 

where Vex is the excluded variance of the spectroscopic samples 
at all wavelengths outside the band-pass, Kco is the variance cutoff 
value at wavelengths defining the edges of the band-pass, AR and 
4 are the right and left wavelength limits of the band, SEP is the 
standard error of prediction for the calibration model, and (G/ 
m) is the proportionality factor defined in eq 2. Based on the 
original 40-sample calibration set, the effective band-pass was 
determined to be between 424 and 622 nm for these data. 

Spectrum Matching. Reference 5 describes needle optimization 
as a method by which spectral transmission targets can be 

(17)   Myrick, M. L.; Soyemi. O.; LI, H.; Zhang. L.; Eastwood, D. Fresenius J. 
Anal. Chem. 2001, 369. 351-5. 
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Figure 5. Comparison of the spectral target generated from the 
4-factor PCR regression vector for the determination of BB generated 
from a calibration set of 20 binary dye transmittance spectra (dashed 
line), to the transmittance spectrum of a MOE designed by spectral 
matching with permissible tolerances (solid line). 

approximated through iterative synthesis of an interference 
coating.15 It is the basis for several commercial thin-film design 
programs that are presently available.1819 Using needle optimiza- 
tion, the MOE design that best matches the spectral profile of 
the PCR vector is iteratively synthesized by minimizing a merit 
function, F, which describes the difference between a calculated 
spectrum (based on the MOE layer thicknesses in each iteration) 
and the target spectrum (represented by the spectral profile of 
the PCR vector). Ffor a spectral-matching synthesis routine can 
be defined by 

\mpi    Toly. 

k\\/k 

(4) 

where Zf> is the calculated response (e.g., transmittance) value 
at wavelength j, Zj is the target value, Tol/ is the design tolerance 
at that wavelength, m is the number of wavelength targets, and k 
is an algorithm gain factor used to weight the relative importance 
of mismatched regions. Design tolerances can be selected for each 
wavelength channel, which specify the minimum allowable devia- 
tion from the target at that wavelength. The design process 
involves the insertion of a zero-thickness layer (needle) into the 
MOE refractive index profile at each iteration of the optimization 
routine. The insertion results in the adjustment of existing layer 
thicknesses as well as that of the new layer to give a better (lower) 
estimate of the merit function. The process continues until the 
merit function can no longer be minimized. The periodic applica- 
tion of a "tunneling" function helps in achieving a global minimum 
for the optimization process by regularly perturbing the system 
as a means of escaping local minimums. Figure 5 shows a 
comparison of the transmittance spectrum of a MOE element 

(IS)   TFCalc, Software Spectra Inc., Portland, OR. 
(19)   FilmWizard. Scientific Products and Services Inc., Carlsbad. CA. 
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produced by spectral matching to the target spectrum. The target 
spectrum was created from the 4-factor PCR regression vector 
that resulted from the calibration of 20 binary dye detector profiles 
with corresponding BB concentrations. Although the spectrum 
(the solid line in Figure 5) varies from the target (the dashed 
line) in some wavelength regions, the result is within the allowable 
tolerances for the design. The main complication of this approach 
to designing MOEs is that the PCR regression vector is not 
necessarily the basis for the simplest MOE. 

For example, this MOE designed by spectral matching using 
spectral tolerances determined as reported elsewhere17 consists 
of 46 alternating layers of Nb205 and Si02, with a total coating 
thickness of 3.7 fim. The deposition system we use for depositing 
these coatings (vide infra) would require ~2 days to produce this 
coating. Further, the accuracy with which a spectrum can be 
created in an actual MOE is related to the number of layers in 
the coating; more layers provide increased opportunity for 
manufacturing errors. The MOE designed by spectral matching 
was not fabricated. Instead, we pursued an alternative method to 
MOE design developed in our laboratory with the aid of P.G. 
Conceptually, this new approach could be called "spectral vector 
relaxation" (SVR). The basis for SVR is that many vectors satisfy 
the criteria for good regression vectors in addition to the ones 
that are found via PCR. Some of these vectors will be easier to 
fabricate in the MOE form than others; we seek a general method 
for locating those that are the simplest to fabricate. 

MOE Design via Least-Squares Minimization of Sample Predic- 
tion Error: SVR Even with the careful selection of design 
tolerances, there is no guarantee that needle optimization will 
produce a design that matches a spectral target andean be readily 
fabricated. For example, in cases where the target spectrum has 
many high-frequency components (e.g., noise), it is quite likely 
that a MOE design will result with many layers and a large value 
of total layer thickness. Such coatings are difficult to fabricate 
using conventional thin-film deposition techniques because manu- 
facturing errors accumulate with each layer and because stress 
builds between the coating and its substrate with increasing 
coating thickness. Such stress will generally lead to coating 
delarnination when the coating thickness exceeds ~10—25 fim. 
In addition, economic considerations of long deposition cycles 
argue for simplified, thinner coatings. 

Instead of trying to match a PCR regression that represents a 
fixed SEP, an alternative algorithm has been developed that 
combines design with optimization of the SEP.9 This algorithm is 
based on a nonlinear least-squares optimization technique and 
attempts to synthesize the optimum MOE design at a given level 
of complexity of the coating. In other words, instead of creating 
an MOE design whose spectrum matches a regression vector, 
an MOE design is created with a fixed upper-bound level of 
complexity (numbers of layers and layer thicknesses). Among all 
the possible MOE designs with a fixed maximum level of 
complexity, the one whose spectral profile results in an optimal 
value of the SEP can then be obtained. 

Unlike the previous design method, which starts from a single 
layer and gradually builds up the coating, the SVR filter design 
algorithms are initialized with a specified number of layers with 
either random or predetermined layer thicknesses. 
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Table 1. 26-Layer MOE Design for the Determination of Bismarck Brown in a Binary Dye Mixture with Crystal Violet 
Showing the Individual Layer Thicknesses (in Nanometers)* 

layer no. material layer thickness (Ä) layer no. material layer thickness (Ä) 

1 Nb205 279 14 Nb2Os 675 
2 Si02 2099 15 Si02 374 
3 Nb205 702 16 Nb205 675 
4 Si02 796 17 Si02 493 
5 Nb205 477 18 Nb205 795 
6 Si02 657 19 Si02 309 
7 Nb2Os 434 20 Nb205 2024 
8 Si02 723 21 Si02 1023 
9 Nb205 328 22 Nb205 796 

10 Si02 664 23 Si02 1539 
11 Nb205 304 24 Nb205 921 
12 Si02 1405 25 Si02 881 
13 Nb205 577 26 Nb205 720 

"Layer 1 is the layer closest to the substrate (BK-7 optical glass). 

If n is the number of layers in the coating, optimization using 
the SVR algorithm can be visualized in an n + 2 dimensional 
space. The additional two dimensions in the space are scaling 
(G/m) and offset (off) factors relating the spectral vector to the 
dependent variable in the sample. The figure of merit in this 
optimization is the SEP for prediction of the dependent variable 
using the design of the coating at each iteration. The steps to 
calculating the SEP at the end of each iteration is as follows; first, 
the current optical transmission spectrum (T(A)) spanning m 
wavelength channels is scaled to a regression vector (R) as in 

R=(G/jn)[2t-l] (5) 

Next, an estimate of the concentration of sample i (/,) is 
determined as the offset scalar product of its spectrum (x,) with 
the regression vector (R), where f represents the vector transpose. 

y, = XjR1 + off (6) 

By substituting eq 5 into eq 6, the SEP for N validation samples 
is calculated thus: 

SEP = - 

"(t   [G(2t-l)l<        1        | 

N 
(7) 

During optimization, layer thicknesses that fall below a specified 
threshold value are deleted because extremely thin layers are 
difficult to deposit accurately in our current apparatus. Because 
the final MOE design that results from SVR can have less than, 
or equal to, the starting number, this novel algorithm creates 
designs with smaller overall coating thicknesses than those 
created with needle optimization. In practice, we have found that 
this can often be achieved without sacrificing predictive ability. 

The starting point of the optimization routine is important since 
the SVR algorithm can converge to a nonglobal optimum. The 
choice of an appropriate starting point usually produces a rapid 
descent to the global optimum for a given upper-bound level of 
complexity. 
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Figure 6. Results for a MOE produced by SVR. Comparison of 
the measured MOE spectrum at 45" (dashed line) to the calculated 
SVR MOE spectrum at 45° (solid line). Polarization effects in the 
measured spectrum are uncorrected. 

There are currently two variants of the SVR MOE design 
algorithm that differ in their modes of initialization. The first one 
initializes the optimization process with a specified number of 
layers with random thicknesses, which are then modified to give 
the best MOE design. Starting with a random number of layers 
or layers with fixed thicknesses, the second variant to the design 
algorithm creates a partial design by crudely matching the PCR 
regression vector using standard spectral matching. With this 
partial design as the starting point, the MOE spectrum is then 
further refined. The SVR approach does not add new layers but 
instead deletes layers that fall below a specified minimum 
permissible thickness during iteration. For comparison to the 46- 
layer spectral-matching design described above, we initialized a 
SVR design beginning from a partial needle design consisting of 
30 layers. The final SVR result is shown in Table 1. This design, 
which corresponds to an SEP of 0.31 fiM, has 26 layers with total 
thickness of 2.1 jim (solid line in Figure 6) and was selected for 
fabrication and testing, as described in the following sections. 

4. MOE Fabrication. The multilayer thin-film coating as 
synthesized by the filter design algorithm consists of alternating 
layers of Nb205 and Si02 deposited on a glass substrate (Corning 
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BK-7). These materials have well-defined refractive indices as 
shown in Figure 2 and are suitable for use between the near-UV 
and the long-wavelength mid-infrared spectral regions. Only one 
set of targets, either of elemental niobium or elemental silicon, is 
operated at a given time during deposition, producing films of 
exclusively one or the other material. 

During the RMS process,20 argon atoms are ionized and 
entrained in a magnetic field. The argon ions strike the elemental 
targets and eject atoms from the targets by momentum transfer. 
Oxide films form on the substrate as a result of the reaction of 
the metal atoms and oxygen in the chamber gas. This reaction 
occurs exclusively on the substrate under the conditions of 
deposition. The placement of the substrate on a 35.6-cm-diameter 
octagon-shaped rotating drum ensures a uniform coating as the 
drum sweeps through the deposition zone. 

Process Control. The layer thicknesses of the coating materials 
must be controlled very precisely during deposition to ensure that 
the MOE spectrum accurately matches the design. The progress 
of the MOE fabrication is optically monitored by keeping track 
of the evolving filter spectrum as each layer is deposited. This is 
done with monitor curves, which are single-wavelength transmit- 
tance spectra of the evolving MOE spectrum for individual layers 
(i.e., transmittance versus layer thickness). In an ideal situation, 
experimentally measured monitor curves are compared with 
calculated values to determine the end point of layer deposition. 
The facilities that are currently available to us for process 
monitoring do not allow us to directly measure the true transmit- 
tance as the layers are coated, but instead only the power 
transmitted through the coating. The relationship between the 
observed monitor values and the predicted monitor curves is found 
by normalizing the experimental monitor curves to the theoretical 
curves at turning points in their transmission as a function of layer 
thickness. Layer deposition is terminated when normalized values 
of the transmittance match the value expected for the target 
thickness as closely as possible. In our experience, the fairly 
complex normalization routines we have built into our Lab VIEW 
process control engine only work well when the monitor curve 
wavelengths are selected subject to the following criteria: 

(1) The monitor curve should have adequate curvature with 
well-defined maximums or minimums. This is because maximums 
and minimums provide the most stable points for normalization 
of the experimental transmitted power measurements to the 
predicted transmittance monitor curves. 

(2) The monitor curve should cover a fairly wide range in 
transmittance values because the rate of transmittance change 
per unit deposition thickness is directly related to the precision 
with which the layer can be deposited. 

(3) Slight changes in the monitor wavelength should not result 
in rapid changes in either the shape of the monitor curve or the 
range in transmittance values that are covered by the monitor 
curve. This is because errors inevitably accumulate, shifting the 
monitor curves to higher or lower wavelengths by small amounts. 
Monitor wavelengths at which the monitor curves experience 
large changes with small errors in wavelength lead to irrepro- 
ducible results and frequently to serious errors in fabrication. 

(20)  Parsons, R. Sputter Deposition Processes. In Thin Film Processes; Vossen, 
J. L., Kern, K., Eds.; Academic Press San Diego, 1991. 
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As an example, Figure 7 shows the calculated (transmittance 
versus physical thickness) and experimental (transmitted power 
versus number of deposition cycles) monitor curves for the first 
2 layers of the 26-layer SVR MOE. Deposition is closely monitored 
by matching the two curves for each layer. The two layers 
correspond to a total thickness of 2400 Ä. After the selection of 
appropriate monitor curves, the software program generates a 
recipe file which contains the chamber operating conditions for 
the initial deposition of all the individual layers. Since these 
conditions are based purely on the approximate deposition rate 
of the materials, they are only accurate to within about ±5%. 
Consequently, the system is designed to automatically deposit only 
80% of each layer initially to avoid overdepositing the layer before 
the process control algorithm comes into play. The parameters 
entered into the recipe file include the Ar and 02 flow rates 
(controlled by mass flow controllers), predetermined monitor 
wavelengths for each layer, the number of deposition cycles 
required for ~80% deposition of each layer, the magnetron power, 
predeposition sputtering time (to clean the targets of contami- 
nants), and the detector gain. After each layer is 80% deposited, 
new commands are entered into the recipe file by our process 
control engine to make adjustments to the process parameters 
until the layer deposition is complele. These updates to the recipe 
file are fully automated. The experimental curves, particularly for 
the first layer (Figure 7B), do not appear to faithfully reproduce 
the theoretical curve. This is only due to the operation of the 
process control engine, which adjusts the rate of deposition so 
that the final layer thickness is achieved as nearly as possible. 
This gives the experimental measurements a "stuttered" appear- 
ance as the process control engine iterates to a physical end point. 

Deposition rates are rarely consiant due lo slight fluctuations 
in power as well as the values of the optical constants (i.e., layer 
absorption coefficients and refractive indices as functions of 
wavelength) of the two materials at room temperature over a 
period of time. Also certain layers are more sensitive to errors 
than others due to a lack of adequate monitor curves at the 
available wavelengths. These factors combine io introduce minor 
errors in the MOE spectrum Despite this we have been able to 
routinely produce filter elements with U-tter iruin 95% accuracy. 
Figure 6 shows a comparison of the measured MOL spectrum at 
45° to the design (theoretical) spectrum Much of the error 
between the two curves is an ofhet due io polarization in the 
spectrometer that recorded the measurement Ken so, there is 
a reasonably good fit between the two \i«ectra 

5. Installation and Tuning of ihr MOE in the Measure- 
ment System. The optical spectra of the original samples from 
which the MOE was designed »ere re< orded on a UV-visible 
diode array spectrometer. However, the deposition of the coating 
is controlled with a different spertrometei If Kiev two spectrom- 
eters are not exactly calibrated in wavelength with one another, 
the result will approximately be a fixed wavelength offset between 
the actual MOE spectrum at the desired angle of incidence and 
the designed MOE spectrum al the same angle Provided that 
this error is small, it can be corrected by slightly tuning the angle 
of the MOE in the measurement system That is. instead of using 
the MOE at exactly 45°, the optimum angle might be slightly more 
or less than 45°, depending on the wavelength calibrations of the 
two spectrometers. The best spectrometer for making this 
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Figure 7. Theoretical and experimental monitor curves for layers 1 and 2. (A) Theoretical layer 1 monitor at 420 nm; (B) experimental layer 
1 monitor at 420 nm; (C) theoretical layer 2 monitor at 450 nm; (D) experimental layer 2 monitor at 450 nm. 

determination is clearly the one on which the original samples 
were measured. For this reason, a device to adjust the filter angle 
prior to sample measurements was built. This device consists of 
a micrometer-driven adjustment for the MOE angle. When the 
MOE was installed in the optical block shown in Figure 1, the 
optical block was transferred to the original spectrometer and 
adjusted with the micrometer-driven tool to match the wavelength 
axis with the design as closely as possible. After adjustment, the 
MOE was locked in place and transferred back to the optical 
system for measurements. 

6. Analysis of Crystal Violet/Bismarck Brown Dye Mix- 
tures. Conventional PCR Regression on Absorbance and Transmit- 
tance Data. To gauge the results of the MOC measurements 
(using the apparatus in Figure 1 fitted with the fabricated MOE) 
against conventional multivariate calibration, conventional PCR 
regression analysis was carried out on the same data set used for 
MOE design. A PCR calibration of the BB concentration (requiring 
two factors) was initially carried out with absorbance spectra that 
are obtained by the conversion of the measured transmittance 
spectra (A = -log 7). This produced a SEP of 0.2 /iM in BB. 
Next, a PCR calibration (requiring four factors) was done with 
the corrected detector intensity response. Despite the nonlinearity 
between the detector response and concentration, a linear calibra- 
tion was obtained with an SEP of 0.26 fM.. This is slightly worse 
than the results obtained from calibrating the absorbance spectra; 
nevertheless, the results are reasonably comparable as shown in 
Figure 8. The corresponding SEP for the radiometrically corrected 
spectra and our theoretical 26-layer MOE is slightly higher at 0.31 
fM. 
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Figure 8. Calibration in absorbance vs transmittance modes. 
Comparison of PCR calibration of BB in a binary dye mixture using 
absorbance spectra (squares) with PCR calibration using radiometri- 
cally corrected transmittance spectra (circles). 

Expectations versus Realities. The theoretical SEP for our 26- 
layer SVR MOE is based on spectra obtained on a conventional 
spectrometer. To evaluate the way in which a real MOE will 
operate, we should consider the source of the SEP. If, for instance, 
0.31 ,uM is an SEP attributable to model or reference errors (as 
is probably the case here), then a real MOE-based device could 
produce an actual SEP no better than this value. In other words, 
if model or reference errors are responsible for the SEP, then 
the theoretical (model) SEP is a lower bound for the real SEP. 
Errors in the production of the MOE or errors in the calculations 
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preceding the model could negatively impact the result but 
probably not improve it. On the other hand, if the SEP is not 
limited by model or reference error but by signal-to-noise ratio in 
the original measurements on conventional instruments, an MOE 
could conceivably improve the result. As described in ref 5, MOEs 
are far less sensitive to detector noise contributions and low light 
levels than are conventional spectrometry systems. In general, 
UV-visible spectroscopy and modeling is not limited by noise 
but by model or reference errors. Thus, we should anticipate that 
our actual MOE will not miraculously reduce the expected SEP. 

Determination of Bismarck Brown with the MOC Approach. The 
difference (in millivolts) in detector signals between detectors 
viewing MOE-reflected versus MOE-transmitted light that first 
passed through validation samples was measured for 39 samples. 
These samples were different from those samples that were used 
for MOE design, but were designed with a similar spread of 
concentration values. A total of 20 of these samples were used to 
evaluate the relative responsivities (the relative gain factor) of the 
two detection arms of the measurement system. To understand 
why this is necessary, consider that the two detectors shown in 
Figure 1 are physically different devices and thus can have slightly 
different relative responses. Since the MOC measurement is given 
by the difference in the two detector responses, a correction factor 
is necessary to give them the same overall gain. If this relative 
gain factor is called K, to ignore it assumes K « 1. Figure 9A 
shows the result of ignoring K. With an incorrect value of K, 
correlation between the detector differences and the BB concen- 
tration is seriously degraded. Figure 9B shows the optimum 
correlation obtained between the detector differences and BB 
concentration by giving K = 1.18 in the MOC equation, 

C= 3.64 (T- KR) +39.57 (8) 

where Cis BB concentration in micromolar and Tand R are the 
detector outputs in millivolts. 

The calibration model was tested by using the linear regression 
model in eq 1 to predict the concentrations of the remaining 19 
samples. Figure 10 (square points) shows a plot of the predicted 

1078   Analytical Chemistry, Vol. 73, No. 6, March 15, 2001 

25 

20 

£    is 

» 
pa 

  T- 

□ 
O 

BBB 

■ 

B 

0 
0 

  -      —         ■' 

■ 

10 15 20 

Actual BB Concentration 
Figure 10. Predicted BB concentration vs actual BB concentration 
from detector difference measurements with optimum relative gain 
factor. Squares: linear model, SEP = 0.69 fiM. Circles: third-order 
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BB concentrations versus the actual BB concentrations using this 
model. The SEP was determined to be 0.69 pM. On the basis of 
the appearance of nonlinearity in the calibration data, different 
nonlinear models were constructed from polynomial fits of 
increasing order. These nonlinear models were developed by 
assuming a polynomial correlation between (T - KR) and 
concentration instead of the linear relation given in eq 8. Thus, 
the first 20 samples were used to obtain each of the possible 
models, and predictions based on these models were made for 
the remaining 19 samples. We observed that a third-order 
polynomial model provided the best improvement to the SEP 
(=0.6 fiM). The improvement obtained by using these nonlinear 
models was relatively minor. 

Discussion of Results. A number of factors exist to explain the 
disparity between the estimated linear SEP (0.69 fiM) for MOC 
in this example and the expected SEP of 0.31 fiM. First, we were 

55 



unable to calibrate the detectors because of instrumental limita- 
tions. Instead, data from the manufacturer's specifications were 
relied upon in determining detector spectral response This 
information is of a general nature and better results are expected 
when all the individual optoelectronic components used in as- 
sembling the MOC measurement system are fully calibrated. 

Second, fabrication errors resulting in the mismatch between 
the measured MOE spectrum and the theoretical spectrum can 
play an important role in the final results. An accurate reproduction 
of the MOE coating layers as specified by the design is necessary 
to achieve a value of the SEP that is comparable with that 
predicted for the design. The current process control system for 
the fabrication of MOEs does not provide the most effective means 
of monitoring the deposition process to produce layers with 
accurate thicknesses. Fortunately, many of the shortcomings of 
our current process control system can be rectified. These 
improvements will be the subject of future reports. 

Third, normalization of the data was not performed. The 
acquisition of the test data in our laboratory was performed over 
the course of two 2-h sessions, so slight drift in the detectors 
probably contributes to our error. Normalization is an aspect of 
multivariate optical computation that will be the subject of a future 
report. A brief description of normalization and its hypothetical 
use in multivariate optical computing is given in ref 5. In brief, 
eqs 1 and 2 provide that the difference between transmitted and 
reflected rays in the Figure 1 instrument is related to the 
magnitude of a spectral vector (the regression vector) in the 
sample spectrum. The summation of the two responses, however, 
is directly proportional to the total magnitude of the spectrum. 
Corrections to the calibration data can be made so that they are 
suitable for measurement by calculating the ratio of the difference 
between T and R to the summation of T and R. This forms an 
implicit "normalization" of the spectrum during the prediction step 
and can be used to correct for prediction errors associated with 
power fluctuations and detector drifts. 

Fourth, the lamp whose calibration we show in Figure 4C 
burned out early in our testing. Although a new lamp of the same 
type was installed and operated at the same voltage, there is no 
guarantee that the color temperature of the new lamp matched 
that of the old. This is an interesting problem that is common to 
many spectrometry systems using lamps and one that is ultimately 
addressable with MOC technology: a spectral vector for color 
temperature can be produced that will enable lamps to be 
controlled for color temperature. This problem is one that we are 
currently beginning to address and will also be the subject of a 

future report. 

CONCLUSION 
The concept of multivariate optical computing has been 

demonstrated with the successful design and testing of an MOE 
for the analysis of a binary dye mixture. The results obtained 
compare quite favorably with conventional PCR regression despite 
the nonidealities in sample measurement using the current 
prototype instrument, as well as those stemming from MOE 
manufacture. Measurements will be extended to the determination 
of chemical species in more complex systems with a greater 
number of interfering agents. 

There exist several areas of theory that still need to be explored 
in order to gain a better understanding of MOC. For example, no 
theory has been developed covering the susceptibility of this 
technology to manufacturing errors. Also, the application of 
chemometrics to radiometric data has not been fully developed, 
so that there is currently no way to quantitatively predict the errors 
accumulated from nonlinearities in radiometry. All these areas 
are subjects of further study. 

In general, we think it is important to keep in mind the 
following truth about multivariate optical computing: It is not a 
panacea. It is subject to all the same problems to which 
conventional multivariate spectrosropy is prone. In the case of 
weak signals or noisy detectors, it ran hypothetically produce 
better SEPs than conventional spectrosropy; but it is no less 
sensitive to model or reference errors Own conventional measure- 
ment techniques. Instead, MOC trades one set of problems for 
another. At the cost of a complex design and manufacturing 
process and the loss of some experimental flexibility, one gains a 
far simpler instrument with dramatic allv lower cost and mainte- 
nance. In our laboratory, for example we estimate that the cost 
of producing the 26-layer MOF used here is much less than $100 
per element when 50 or more art m.idr In some instances, 
multivariate optical computation is a tix>l Out could make complex 
spectroscopic measurements atressitil. in a mass market. 
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10.5   NOVEL FILTER DESIGN ALGORITHM FOR MULTIVARIATE OPTICAL 

COMPUTING 
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ABSRACT 

A new algorithm for the design of optical computing filters for chemical analysis otherwise known as 
Mdüv^Opü^ Element CMOEs), is described. The approach is based £2£SE£SE of 
the MOE layer thicknesses to the standard error in sample prediction for the chemical necterfSSS 
au«:>^modified version of the Gauss-Newton nonlinear (optimization algoriüuiL TT^ ^algorithm can 

2S«Si!TSSdK?y rand°m kyf thi<*nesses °r * * I»«*** *■*»■ ^Sthm naTbS successfully tested by usmg a to design a MOE for the determination of copper un,porphynn iTS 

^SiT^ Ur0P0lphyiin (freebase)' mckel «WM». coppeTnn.po^pR^nd tin 

Keywords: optical computing, thin films, chemometrics, spectroscopy, multivariate 

1. INTRODUCTION 

Mulrrvariate calibration is a well-established tool in chemometrics for the correlation of a physical or 
chemical property of interest to multiple wavelength channels of optical spectra. (1-3) The conventional 
application of this tool in chemical analysis entails the acquisition of optical spectra in the appropriate 
wavelength region (typically fiom the iiltraviolet to the mid-infiared). Next, chemometric tools are used to 
extract a spectral pattern (or regression vector), which is correlated to the property of interest but 
orthogonal to interferences (4). Prediction of the property in an unknown sample is carried out by 
determining the magnitude of the spectral pattern in the optical spectrum of the sample More specifically 
the magnitude is calculated by taking the inner product of the spectral pattern and the optical spectrum of 
the unknown compound. A major drawback in the widespread use of multivariate calibration, especially for 
fidd^apphcations, is its dependence on expensive and bulky laboratory-type equipment for data acquisition 

h^uWvariate Optical imputing (MOC), spectral patterns are encoded iiito the transn^ 
optical urterference filters for the purpose of detecting spectral signatures for chemical prediction Earlier 
reports by Mynck et al. (5,6), have sho™ that the prediction step can be optically mimicked by passim; 
lightof a fixed bandwidth (which has interacted with the sample either by transmittance through the ample 
or reflectance from the surface of the sample), through two optical filters whose tomsmission profiles 
combine to give a structure that accurately describe the positive and negative portions of the spectral 
pattern. A more recent study (7) has described a new approach to this method of optical computation, 
which uses a single filter for prediction. ^     vAm^m-mm, 

A typical iiuerference filter (coating) design consists of ahernating layers of high- and low-refractive index 
materials with specified thicknesses. Interference coatings with irregular transmittance profiles are 
lubrication through the process of reactive magnetron sputtering (8). As was originally envisaged, the 

Correspondence: Email: soyenu@rnail.chem.sc.edu; Telephone: 803 777 2652; Fax: 803 777 9521 

Advanced Environmental and Chemical Sensing Technology. Tuan Vo-Dinh, Stephanus Boettgenbach, 
•**> Ed,l0rs, Proceedings of SP1E Vol. 4205 (2001) O2001 SPIE. • 0277-786X/00/$15.00 

58 



praffleofa1Me*tenniKd^ctxal patten, is ^^f^^Ä^^^ 

merit function which describes the difference ^™ ^e ^^^tte^
1^ssitate filters of high 

this design technique in MOC. 

Mawaytfovercomingthisl^^^ 
algorithm, (based on a ™^^S    C^sIp^edSon for thTchemical species of 

saw: ä i-c SSteasr.ssä= 
A demonstration of this algorithm is presented i-ru* a MOE for *> *"™ta-tal °f ^ 
uroporphyrin in a quaternary porphyrin mixture has been designed. 

2. DESCRIPTION OF FILTER DESIGN ALGORITHM 

2.1 Calculation of filter transmitunce 

algorithm. This method is easdy ^lemented on an^^P^^Ljrßcntedby a 2x2 characteristic 
filer design -^^«^^ 

coefficient 

>7 = 
n+iT2     r3+iT4l_|cos<5       i/i7Sbi«| (1) tos<5 

Tjsmö    cosS     I 

.    -   •-•  matri* for the f* layer r. is the complex refractive index (= «rHkfl, where n, is the 

5= i-i—cos»; 

1    /iQ2sin2go (3) 
cos0/=Jl ^2 

individually layers, i.e.; 
(4) 

M = rY(layerl)*Y(layer2)*...*Y(IayerL)] 
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Layer1 is the layer flat is closest to the substrate. Light transmitted through the film layers consists of an 
electric vector component (E) and a magnetic vector component (H). The characteristic matrix relates the 
electric and magnetic fields at individual layer boundaries in the following manner: 

-M 
i 

ns +ik3 (5) 

where n, and k, are the refractive index and absorption coefficient of the substrate respectively The 
propagation of light through a single thin film coating is illustrated by Figure 1. As is shown in the 
diagram, there are multiple reflections of the incident light at the air/film and substrate/air interfaces The 
transmittance and reflectance at the air/film interface, is given by equations 6 and 7. 

Figure 1: Transmission of light through a one-layer interference coating 

*i = 4»5« 
(6) 

Rt=l-Z (7) 

For normally incident light, n=n„=l (where n is the refractive index). However, when the filter is tilted, the 
propagated wave is split into two plane-polarized components, one with the electric vector in the plane of 
incidence, known as ppolarized, and one with the electric vector normal to the plane of incidence, known 
as s-polarized. The refractive index of the incident light is therefore modified as follows: 

COS0, 
• (p-polarization) (8) 

n = n0 COs0o (s-polarization) (9) 
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T2 and R2 are related to the real and imaginary components of E and H (i.e., E,Ä and Hi ,H2 respectively) 
determined from equation 5. 

T  _ Ansn  (10) 
If — 

Ry = 
(Ei-Hi)2+(E2-H2? 

2    {Ex+Hxf+{E2+H2? 
(11) 

The total traiisniittance through the fiM and substrate 
of the combined reflectance and transmittance terms (see Fig.l) i.e., T,T2, T,T2R,R2, l,l2(KiK2J, 
T!T2(RiR2)

3, etc, which results in the following expression: 

where n, and n, are the complex refractive indices of layer /, and the substrate (^respectively. For tilted 
MÜH ^average transmXnce due to the p- and s-polarized components of the incident light is 

determined. 

2.2 Nonlinear Optimization of Filter Layers 

The determination of the RMSQ from a calculated filter transmittanceispectrum <T) with m ^length 
ch^els^ with the Sä^ 

(G). 

^_ 0(27-100) (13) 

m 

Using a calibration set of optical spectra (S) representative of real samples, the vector of concentration {$>) 

values of all the samples is predicted as follows 

j> = S*RT + o# (14) 

where offis the offset The RMSQ is determined by comparing the concentration of N calibration samples 
estimated from the regression vector, to known concentration (y) of the same samples. 

MSQ 

N 1 

/=!  (15) 
N       7 

;=i 

Once the filter profile resulting in an optimal RMSQ is determined, the pcrfonnance^ MOEin 
prScting future samples can be gauged by calculating the standard error in sample prediction (SEP) from 
a separate set of validation samples as shown in equation 16. 
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\msQ*jr}>2 

SEP = ]I ^L_ 

where VMSQ is the root mean squared error of prediction for P prediction samples. The nonlinear 
correlation between the layer thicknesses of an optical filter coating and the RMSQ can be visualized as a 
search for the best (lowest) value of RMSQ on a complex n-dimensional response surface (where there are 
""LS^t0 *? °Ptunized <Rgure 2))- T** ^ter d^gn algorithm used is based on the Quasi-Newton 
method of nonlinear optimization (11,12). The algorithm is initialized by a specified numteVoflayers (n) 
with either random or pre-determined Üücknesses (z), which represent a single point on the response 
surface. At each iteration (k) of the optimization process, curvature (gradient) information is built ur. to 
formulate a quadratic model problem of the form, 

trm-zTHz + cTz + b „,, 
x    2 U') 

where the Hessian matrix H, is a positive definite symmetric matrix (crucial in maintaining a constant 
descent down the slope of the search surface), c is a constant vector, and b is a constant The optimization 
converges to a solution (corresponding to the lowest value of the RMSQ), when the partial derivatives of z 
go to zero i.e., 

V/(z*) = //r*+c = 0 {lg) 

The optimal solution point, z*. can be written as 

z* = -H-'c (19) 

At the starting point, H can be set up to any positive definite matrix (e.g. the identity matrix, I). The 
observed behavior of ft» and V f(z) is then used to build up curvature information to make an 
approximation of H using the updating formula developed by Broyden (13), Fletcher (14) Goldfarb (15) 
and Shanno (16), also known as the BFGS formula. The formula is given by 

M  * *r~?^r (20) 

where 
Sk = Zfctl - Zk 

qk= Vffzw)- Vf(Zk) 

The gradient information is provided by pertubing each of the design variables (i.e layer thicknesses) in 
turn and calculating the rate of change in the RMSQ. At each major iteration k, a line search is determined 
m a direction in which the solution is estimated to lie, and is determined by 

d=-n?m*k) (21) 

During optimization, layers thicknesses that fall below a specified threshold value are not acceptable 
keeping in mind that extremely thin layers may not be conveniently deposited during the fabrication 
process. Therefore, in the event that a layer falls below this threshold value during optimization the 
algorithm activates a termination flag after which the layers) are deleted and the optimization re-started 
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Other termination flags are activated to re-start the process whenever Ü* optimization is stalled or the 
number of maximum iterations is reached. 

The descail low** a» opo-d vatae of 11« FMSQ'■'£%*'*£££,„ (p™ 2). TIK ctote of 

flowchart describing the design algorithm is shown in Figure 3. 

of the prediction error) starts a x„. 

3. EXPERIMENTAL 

IM NH3 solution of Uro at KKpM, Sn-U ^4.^^SL to ensumthat the relative 
Random numbers were generated and f^^^^^S^^^^^O»^^^^ 
concentration of *e fourporphynns v»j^'^ f^^o •/„ and 70 %. In this manner, 40 

S^^lTnSJ^ S^^- s^ra (Figure 4) were aco^red 
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between 400 nm and 650 nm on a Hewlett-Packard UV-VIS diode array spectrometer (Model 8543). An 
instrument prototype for the implementation of multivariate optical computing using a single MOE, has 
already been described (7). The transmittance spectra were convolved with the characteristics of the 
bandpass filters, lamp source, and detectors in the prototype field instrument to give an accurate 
representation of the detected response as a function of wavelength (Figure 5). The corrected spectra were 
used for MOE design and multivariate analysis. The MOE design algorithm was written in MATLAB 
(Mathworks Inc. Natick, MA). The PCR routine used for multivariate calibration is part of the 
PLS_TooIbox (Eigenvector Research Inc., Manson WA). 

4. RESULTS AND DISCUSSION 

The conventional approach to the multivariate analysis of optical spectra requires the use of bilinear 
regression techniques for the correlation of the spectral wavelengths to concentration (or any other property 
of interest). In particular, PCR is routinely used to define a regression vector or pattern, which correlates 
the wavelength channels to the concentration of the species of interest, but is orthogonal to interferences 
(4). The initial step in PCR analysis involves the reduction in the dimensions of a n x m matrix of optical 
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R=(XTX),XTy 

(22) 
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Figure 5 Porphyrin response profiles corrected for filter bandpass, source radiance, and detector sensitivity 
The regression vector (R) can then be used to determine the concentration of an unknown compound (y^ 
from its spectrum (x) as shown in Equation 23. 

x*RT (23) 

A PCR model for the determination of Cu-U was constructed from 20 of the quaternary porphyrin 
mixtures corresponding to a 20 x 251 data matrix. Since there arc no optical analogs for the kinds of 
spectral pre-processing used in multivariate calibration, none was carried out on the data set prior to the 
model construction. The model, which required 4 factors, was validated with the remaimng porphynn 

mixtures (20) yielding an SEP of 0.31 pM. 

Usine the same 4-factor PCR regression vector above, the filter design algorithm was initialized by a set of 
60 random layer thicknesses. A partial match of the regression vector was made in which the starting fcyer 
thicknesses were modified at each iteration to minimize the sum of squared difference between the PCR 
vector and the calculated regression vector. It is envisaged that the filter layers that define the best match 
obtained from this ntinimization process would also define a convenient spot on the response surfe« from 
which a search for the "best" rninimum (representing the optimal layer thicknesses) is imtiated. With this m 
mind, a final filter design consisting of 34 layers that corresponds to an SEP of 0 29uM(see equations 13- 
loTwas created The filter spectrum is shown in Figure 6. Thus, the calculated MOE vector is a slight 
improvement on the PCR regression vector in terms of predictive ability. A gain factor of-32.09 was used 
to scale the calculated regression vector into the filter spectrum (Equation 13). Table 1 shows alternating 
layers of the high index material (NbA), and the low index material (SiOJ, which make up the filter 
design. A comparison of the regression vector that yields this filter design, with the PCR regression vector 

is shown in Figure 7. 
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Figure 6. Transmittance spectrum of an MOE element for the determination of copper porphyrin in a quaternary 
mixture 
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Figure 7. Comparison of PCR regression vector to the regression vector scaled from the MOE 
transmittance spectrum 
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Table 1. MOE design for the determination of copper porphyrin in quaternary porphyrin mixture. 

Layer Material Thickness (ran) Layer Material Thickness (run) 
1 NbzOj 100.95 18 SiOz 59.84 
2 SiOz 43.2 19 NbzOs 190.81 
3 NbA 75.32 20 SiOz 44.53 
4 SiOz 72.66 21 NbzOs 75.82 
5 NthOj 140.66 22 SiOz 13.66 
6 SiOz 93.78 23 NbzOs 67.92 
7 NbzO; 158.18 24 SiOz 47.21 
8 SiOz 73.07 25 NbzOs 99.1 
9 NbzOs 160.45 26 SiOz 30.35 
10 SiOz 65.66 27 NbzOs 36.65 
11 NbzOs 73.69 28 SiOz 34.61 
12 SiOz 12.05 29 NbzOs 115.19 
13 Nbz05 74.52 30 SiOz 97.09 
14 SiOz 50.2 31 NbzOs 163.76 
15 NbzOs 89.35 32 SiOz 25.06 
16 SiOz 21.35 33 NbzOs 38.55 
17 Nbz05 85.51 34 SiOz 70.98 

5. CONCLUSION 

A fairly straightforward algorithm for the design of filter elements used for optical computing has been 
described and successfully demonstrated The algorithm synthesizes a MOE with the best predictive ability 
for a chemical species of interest. Unlike design methods that are dependent on matching a fixed profile, 
this algorithm provides multiple pathways through which various MOE designs are obtained all of which 
are still subject to maintaining a low RMSQ. Because of this, the algorithm also provides a means by which 
a particular filter design can be modified continuously during the fabrication process to correct for errors 
generated from the manufacturing process without seriously compromising the predictive ability of the 
MOE. The means by which this is implemented is the subject of future work. 
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ABSTRACT 

Mnltivariate Optical Computing (MOC) devices have the potential of greatly simplifying as well as 
reducing the cost of applying the mathematics of multivariate regression to problems of chemical analysis 
in the real world. These devices utilize special optical interference coatings known as multivariate optical 
elements (MOEs) that are encoded with pre-determined spectioscopic patterns to selectively quantify a 
chemical species of interest in the presence of other interfering species. A T-fonnat prototype of the first 
optical computing device is presented utilizing a multilayer MOE consisting of alternating layers of two 
metal oxide films (NbjOs and SiOJ on a BK-7 glass substrate. The d^ce was tested by using ft to quantify 
copper uroporphyrin in a quaternary mixture consisting of uroporphyrin (freebase), tin uroporphyrin, nickel 
uroporphyrin, and copper mxiporphyrin. A standard error of prediction (SEP) of 0.86uM was obtained fin- 
copper uroporphyrin. 

Keywords: optical computing, thin films, chemometrics, spectroscopy, interference coatings 

1. INTRODUCTION 

Multivariate calibration is an established tool in chemometrics for the correlation of a physical or chemical 
property of interest to information spanning multiple wavelength channels in optical spectroscopy'". The 
conventional application of this tool in chemical analysis entails first the acquisition of optical spectra rn 
the appropriate wavelength region (typically from the ultraviolet to the mid-infrared). Next, chemometnc 
tools are used to extract a spectral pattern (the regression vector) which is correlated to the property of 
interest but orthogonal to interferences4. Prediction of the property m an mikiic^nsainpte is then earned 
out by determining the magnitude of the spectral pattern in the optical spectrum of the sample. More 
specifically, the magnitude is calculated by taking the inner product ofthe regression vector aiid the optical 
spectrum off the unknown sample. A major drawback in the widespread use of multivariate calibration, 
especially for field applications, is its dependence on expensive and bulky laboratory-type equipment for 

A recent publication from our laboratory5 addressed the feasibility of using optical computing in predictive 
spectroscopy to simplify and harden the apparatus necessary for chemical prediction from a theoretical 
standpoint The first reports of a related hypothetical optical approach to multivariate chemical 
measurement were those of Bialkowski6. The use of a single MOE in a beamsplitter configuration has also 
been described for the same purpose7, a permutation most similar to that proposed by Ryabenko and 
Kasparov8. The all-optical approach proposed by our laboratory differs from previous work by centering 
around the production of one or more optical interference coatings whose transmission spectra incorporate 
features of a spectral regression vector. Such interference filters based on multivariate spectroscopy will be 
referred to henceforth as multivariate optical elements (MOEs). MOEs have never been demonstrated as a 
tool for actual chemical measurement, however. 

" Correspondence: Email: myrick@psc.sc.edu; Telephone: 803-777-6018; Fax: 803-777-9521. 
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This report describes the first prototype of a simple optical computing device using a MOE A quaternary 
porphynn mixture consisting of uroporphyrin (freebase), copper uroporphyrinTnickel uroporphynTaS 
zinc uroporphynn, mi selected to design a MOE that would test the concept of all-optical prediction^ The 

2SS T^ M™"™* of "^ demcn* H* »he optic^properS rfÄpSfaS 
«mponente of a sunple T-format spectroscopic system (Figure 1) were evaluated  Second, srJSTa 

SretatioT ThlrTTJT ,Trfed r1 C0DVerted t0 8 SpeCÜaI »**** "* f^che^meöic £2?* f ^ theoretical design for a multivariate optical element (MOE) suitable to this 
rn^meiu was generated Fourth, the MOE was fabricated in-house. Finally, the MOE was installed^ 
our T-format instrument and measurements of calibration and validation samples were performed 

2. EXPERIMENTAL SECTION 

Danonstration of the MOC technique was carried out on a compact T-format instrument (Figure 1) which 
was constructed using Linos Photonics (Mflford, MA) optical components. 

A 6V/6W tungsten filament lamp (Linos Photonics) with lxl.2nm active filament area was used as a light 
r^rfJl? ** UBtnnnent T* sPectral «fiance of the lamp was measured in W /sr-cm'-nm with a 
CO) spectrometer system consisting of a Chromex 250IS spectrometer with a 300gr/mm grating blazed at 
500 nm and a Princeton Instruments 1100 X 300 pixel CCD camera, model TE/CCD-1100-PE The inmit 
opncs on the specbometer system were duplicates of the Figure 1 system. For these measurements tiie 
operating voltage for the lamp was fixed at 5.76 V. The wavelength range of the camera/spectrometer 
system was calfcrated with a standard mercury pen lamp and a standard neon lamp. The spectralradiance 

£2f 57 "SS?? ffÜOnS WHS caUbratod against ■» 0L xries 455 "^grating sphere calibration 
standaidlamp(OptromcLaboratones Inc.) operated under standard conditions. 

TfKtwo Si photodiode active detectors were type BPW21 (Linos Photonics) with a sensitive area of 2 7 
nun , spectral range 320-880 nm and radiant sensitivity at the peak wavelength (550 nm) of 3 8 V/mW The 
relative spectral sensitivity of the detector wavelength was estimated from a Linos Photonics data sheet 
giving values measured at 25 degrees C and 12 V DC supply voltage. 

A bandpassfiher set was used to isolate the spectral region between 400 nm and 650 nm in which the 
viable Jfosorbances of the two dyes are found The bandpass set consisted of two 3 mm thick Schott glass 
filters (Duryea, PA) BG-39 and GG400. *^ 

The porphynn mixtures used for the MOE design were prepared from four porphyrins obtained from 
Porphynn Products Inc. (Logan, UT), Uroporphyrin I Dihydrochloride (Uro), Sn (TV) Uroporphyrin I 
Dichlonde (Sn-P), Cu (H) Uroporphyrin I (Cu-P), and Ni (B) Uroporphyrin I (Ni-P). Stock solutions in IM 
NH3 solution of Uro at 106uM, Sn-P at 57.4^M, Cu-P at 62.6uM and Ni-P at 56.1uM were prepared 
Random numbers were generated and applied in diluting the stock solutions to ensure that the relative 
coaxntxanonofthe four porphyrins varied independently. The random numbers were also chosen to ensure 
that the transmittance spectra of the diluted mixtures were between 30 % and 70 %. In this manner 40 
quaternary porphyrin solutions were prepared in which the concentrations of the four porphyrins varied 
independentiy. Cu-P was selected as the analyte while Uro, Ni-P, and Sn-P were treated as uncorrelated 
interferents whose concentrations varied randomly. Optical spectra of the mixtures were recorded on a 
Hewlett-Packard UV-VIS diode array spectrometer (Model 8543) from 400 nm to 650 nm (Figure 2) The 
samples were measured in a 1-cm fused-silica cell (Starna Cells Inc., Atascadero, CA). 

Following data collection and radiometric corrections for lamp intensity, detector response and bandpass 
design of MOE coatings using an iterative spectral-matching synthesis was performed. For this purpose ä 
nonlinear least squares algorithm was written in-house in the MATLAB programming environmentwas 
used. 

The MOE was manufactured via reactive magnetron sputtering (RMS)10 Our sputtering system (Model CV 
5.1) was aistom-n^ufectured by Corona Vacuum Coaters of Vancouver, B.C. The system operates at 
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room temperature and utilizes a 40 kHz mid-frequency KF supply to power four water-cooled planar 
magnetrons positioned in pairs around a drum that rotates about a horizontal axis. The coating chamber is 
22 inches in diameter and 20 inches deep, contains 4 inch x 10 inch magnetron targets, two containing 
niobium (99.95 % pure, high index) and two containing silicon (99.9999 % pure, low index). Each 
magnetron target is powered at approximately 0.7 kW, although the power is varied during deposition as 
one method of controlling deposition rate. The RMS process was used to deposit alternating layers of 
niobium pentoxide (NbjOs) and silicon dioxide (SiOJ films by reaction with oxygen in the gas mixture. 
MOE designs require accurate knowledge of the optical constants of the coating materials. Experimental 
measurements of the real and imaginary refractive indices of NbA and SiCfe deposited in our chamber 
were determined by variable angle spectroscopic ellipsometry. 

The MOE tested here was fabricated on a 1-inch BK-7 glass substrate. Layer deposition was optically 
monitored online with a 1200 line/mm grating monochromator (Model 9030, Sciencetec, London ON) 
blazed at 250 nm. Light detection was achieved using a photomultiplier tube (Model H5784-03, 
Hamamatsu, Japan). Visible light was obtained from a tungsten filament lamp (Gilway Technical Lamps, 
Waltham, MA). After MOE design was completed, the interference effects on transmission for each layer 
were computed at all accessible monitoring wavelengths. The system can currently monitor wavelengths 
between 420 nm and 600 nm with approximately 1 nm resolution, and thus about 180 different "monitor 
curves" were produced for each layer. From the 180 possible curves, the optimum wavelength for 
monitoring and controlling the deposition of each layer was selected based on a set of criteria developed as 
a result of experience in our laboratory. Process control of the deposition process was performed with in- 
house software written in the LabVJEW 5.1 programming environment that operated in concert with the 
system-control software provided by Corona Vacuum Coaters. The two software packages used the 
selected monitor curves to deposit each filter layer as accurately as possible. 

After the production of the MOE as described above, it was installed in the T-fbrmat instrument shown in 
Figure 1. 20 new samples of the porphyrin mixtures were prepared using the random number generation 
described above. The difference between the signal due to light transmission through the sample followed 
by transmission through the optical filter (aligned at approximately 45 degrees), and light transmission 
through the sample followed by reflection from the surface of the optical filter, were measured for each 
sample. Ten of these measurements were used for calibrating the instrument (determining the optimum 
gain factor for the two detectors), while the remaining nineteen samples were used to validate the 
calibration model. 

3. RESULTS AND DISCUSSION 

Single MOEs can be designed for chemometric prediction by using them in a beamsplitter arrangement as 
shown in Figure l7. Consider the optical transmission spectrum of an MOE to be T(X) = 0.5 + L(X), where 

L(X) is a spectral pattern that can also be represented in vector form as L. Assuming negligible 
absorbance in the MOE, the difference between the intensity of light transmitted through the MOE 

ft" • S land light reflected from it ul • S) is proportional to the scalar product of the vector L with the 

sample spectrum vector, S 

(T-R)* S = (jb.5+£)- (o.5- £))• S=L • S (1) 

To achieve this, the spectrum of the 45-degree filter must be designed such that an optimal multivariate 
regression vector can be derived from it that results in the best possible standard error of sample prediction. 

a. Selection of the Spectral Window and Spectral Mode 
Although MOC should function in many linear types of spectroscopy, the most convenient and most basic 
multivariate measurement to set up is spectral absorbance. MOC should also function in any spectral range 
where good optical elements can be produced. However, in our laboratory our experimental system lends 
itself most conveniently to measurements in the visible spectroscopic region. This is because our MOE- 
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7S T*\" ****"* P™«™»"»"«! »siag an optical monitor batmen 420 n»> a*f 600 nm 

£££* S"JS^r * ""^ * ^te^rt"°« *- »<* •— — be»« 
Absorbance is nominally linear in concentration within the limits over which Beer's Law holds    A 

i^^J, ^to^rctotedtOCOnCentra,i0a Nev«theIe^anumberrfstudiesconS5 
2?S5^!? I^,omctnc measurements to chemical properties using linear chemometric models have 
^P«^d with some "««»-«. In the limit of low absorbano* transmittance varies linearly with 
££3£^* TT I ? *bso<b*a'xs> transmittance can be considered piecewise linear with 
COTcentraüon Also, it has been shown that linear multivariate cahbration methods like PCR and PLS 
(Partial Least Squares Regression), can satisfectorily model nonlinear responses by the inclusion of extra 
fectors or latent vanabfain the calibration model13. In the following dZio, the JSSiTwS 

to evaluate how the nonhneanty of transmittance with concentration affects the resulting prahction erroT 

b. Radiometrie Correction of Spectral Data 
Since measurement by an MOE-based instrument is inherently radiometric in nature, a number of factors 
not normally considered in absorption measurements must be quantitatively evaluated A realistic 
representation of the MOC instrument detector signal mist therefore include a convolution of the followine 
radiometric qualities: *™T,AA,B 

(a) The spectral radiance of the source: A tungsten filament lamp was selected to serve as a light source for 
tire measurement These lamps are approximately black-body-type emitters, with a spectral radiance 
maximum in the near-infrared The spectral radiance ofom tungsten filamem lamp after pa^ through a 
1 mm pmhole was deterniined The spectral radiance profile then was corrected forthtlolid angle 

3r2 

(--— steradians, where r and fare the radius and focal length of the focusing lens in the calibration 

system), and the pinhole area (=7trp
2 mm2, where rp is the radius of the pinhole). 

<b) Transmittance of the bandpass selection filters: In ordinary chemometric applications out-of-band 
light can be^eliminated by simply ignoring it That is, light from the sample that is not in the range over 
which the chemometnes is performed does not have to be sampled In the MOC measurement, however 
band selection filters are used to obtain this result. Inorder to ensure that light from outside the wavelength 
range of our targeted response window (400-650 nm) is not transmitted through the MOE onto the detector 

(c) The spectral sensitivity of the detector: Si photodiode detectors were selected for the dual channel 
measurement system (Figure 1). A plot of the detector sensitivity versus wavelength was estimated from 
lnantifecturer^rovided graph The sensitivity reaches a maximum at about 550 nm and tapers off in the 
short-wavelength near infrared region 

Figure 3 shows the sample transmittance spectra corrected for the radiometric quantities described above 
and they represent the expected detector spectral response for each sample 

c MOE Design 
Once these fectors are known, the design of an MOE must be conducted via iterative thin-film synthesis 
subject to suitable starting, optiimzation and stopping criteria. A method of MOE design known as Spectral 
Vector Relaxation (SVR) has been developed in our laboratory with the aid of Prof. Paul Gemperline of 
East Carolina.University. The basis of SVR is that many vectors satisfy the criteria for good regression 
vectors m addition to the ones that are found by PCR SVR simply selects the vector that is simplest to 
fabricate. r 

If n is the number of layers in the coating optimization using the SVR algorithm can be visualized in an 
n+2 dimensional space. The additional two dimensions in the space are scaling (G) and offset (off) factors 
relatingthespectral vector to the dependent variable in the sample. The figure of merit in this optimization 
is the SEP for prediction of the dependent variable using the design of the coating at each iteration The 
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Steps to calculating the SEP at the end of each iteration is as follows; first, the current optical transmission 
spectrum (TQJ) spanning m wavelength channels is scaled to a regression vector as in equation 4 below: 

2G[T(X)-0.5] 
LW =  (2) 

m 

Next, an estimate of the concentration of sample i (yj), is determined the scalar product of its spectrum 

(Xj) with the regression vector (L ); 

yi=xiLt+o# (3) 

where t represents the vector transpose. By substituting equation 4 into equation 5, the SEP for N validation 
samples is calculated thus: 

N,ff   r2G(if-0.5)lt       1       1 

m L m J   j j 
SEP = I—^ - i }- (4) 1 

During optimization, layers thicknesses that mil below a specified threshold value are deleted because 
extremely thin layers are difficult to deposit accurately in our current apparatus. Because the final MOE 
design that results from SVR can have less than, or equal to, the starting number, this novel algorithm 
creates designs with smaller overall coating thicknesses than those created with needle optimization. In 
practice, we have found that this can often be achieved without sacrificing predictive ability. 

The starting point of the optimization routine is important since the SVR algorithm can converge to a non- 
global optimum. The choice of an appropriate starting point usually produces a rapid descent to the global 
optimum for a given upper-bound level of complexity. 

There are currently two variants of the SVR MOE design algorithm that differ in their modes of 
initialization. The first one initializes the optimization process with a specified number of layers with 
random thicknesses, which are then modified to give the best MOE design. Starting with a random number 
of layers or layers with fixed thicknesses, the second variant to the design algorithm creates a partial design 
by crudely matching the PCR regression vector using standard spectral matching. With this partial design 
as the starting point, the MOE spectrum is then further refined The SVR method of MOE synthesis does 
not add new layers, but instead deletes layers that fall below a specified minimum permissible thickness 
during iteration. 

The SVR design algorithm was used to produce an MOE consisting of 28-layers with a total thickness of 
3.08 uM This design was selected for fabrication as described in the following sections. The spectrum of 
the MOE is shown in Figure 4. 

d. MOE Fabrication 
The multilayer thin film coating as synthesized by the filter design algorithm consists of alternating layers 
of NbzOs and Si02 deposited on a glass substrate (Corning BK-7). These materials have well-defined 
refractive indices, and are suitable for use between the near UV and the long-wavelength mid-infrared 
spectral regions. Only one set of targets, either of elemental niobium or elemental silicon, is operated at a 
given time during deposition, producing films of exclusively one or the other material. 

During the RMS process10, argon atoms are ionized and entrained in a magnetic field. The argon ions strike 
the elemental targets and eject atoms from the targets by momentum transfer. Oxide films form on the 
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«.n.«. .v*»... Wi UK '<*uw w uic uicuu atoms ana oxygen in we cnamoer gas. This reaction occurs 
exclusively on the substrate under the conditions of deposition. The placement of the substrate on a 14- 
ineh diameter octagon-shaped rotating drum ensures a uniform coating as the drum sweeps through the 
deposition zone. *^        ^ 

JWw Control. The layer thicknesses of the coating materials must be controlled very precisely during 
deposition to ensure that the MOE spectrum accurately matches the design. The progress of the MOE 
Mncauon is optically monitored by keeping track of the evolving filter spectrum as each layer is 
deposited^This is done with monitor curves, which are single-wavelength transmittance spectra of the 
evolving MOE spectrum for individual layers (i.e. transmittance versus layer thickness) In an ideal 
situation, experimentally measured monitor curves are compared with calculated values to Aaermine the 
end-point of layer deposition The facilities that are currently available to us for process monitoring do not 
allow us to directly measure the true transmittance as the layers are coated, but instead only the power 
transmitted through the coating. The relationship between the observed monitor values and the predicted 
monitor curves is found by normalizing the experimental monitor curves to the theoretical curves at turning 
points in their transmission as a function of layer thickness. Layer deposition is terminated when 
normalized values of the transmittance match the value expected for the target thickness as closely as 
possible. In our experience, the fairly complex normalization routines we have built into our LabVIEW 
process control engine only work well when the monitor curve wavelengths are selected very carefully. 

After the selection of appropriate monitor curves, the software program generates a recipe file which 
contains the chamber operating conditions for the initial deposition of all the individual layers Since these 
conditions are based purely on the approximate deposition rate of the materials, they are ordy accurate to 
within about 5%. Consequently, the system is designed to automatically deposit only 80% of each layer 
initially to avoid over-depositing the layer before the process control algorithm comes into play The 
parameters entered into the recipe file include the Ar and Ü2 flow rates (controlled by mass flow 
controllers), predetermined monitor wavelengths for each layer, the number of deposition cycles required 
for approximately 80% deposition of each layer, the magnetron power, pre-deposition sputtering time (to 
clean the targets of contaminants) and the detector gain After each layer is 80% deposited, new commands 
are entered into the recipe file by our process control engine to make adjustments to the process parameters 
until the layer deposition is complete. These updates to the recipe fik are tulfy automated. 

Deposition rates are rarely constant due to slight fluctuations in power as well as the values of the optical 
constants (Le. layer absorption coefficients and refractive indices as functions of wavelength) of the two 
materials at room temperature over a period of time. Also certain layers are more sensitive to errors than 
others due to a lack of adequate monitor curves at the available wavelengths. These factors combine to 
introduce minor errors in the MOE spectrum. In spite of this, we have been able to routinely produce filter 
elements with better than 95% accuracy. Figure 4 shows a comparison of the measured MOE spectrum at 
45 degrees to the design (theoretical) spectrum. Much of the error between the two curves is an offset due 
to polarization in the spectrometer that recorded the measurement Even so, there is a reasonably good fit 
between the two spectra. 

e. Installation and Toning of the MOE in the Measurement Syrtem: The optical spectra of the original 
samples from which the MOE was designed were recorded on a UV-Vis diode array spectrometer. 
However, the deposition of the coating is controlled with a different spectrometer. If these two 
spectrometers are not exactly calibrated in wavelength with one another, the result will approximately be a 
fixed wavelength offset between the actual MOE spectrum at the desired angle of incidence and the 
designed MOE spectrum at the same angle. Provided that this error is small, it can be corrected by slightly 
tuning the angle of the MOE in the measurement system. That is, instead of using the MOE at exactly 45 
degrees, the optimum angle might be slightly more or less than 45 degrees, depending on the wavelength 
catibrations of the two spectrometers. The best spectrometer for making this determination is clearly the 
one on which the original samples were measured. For this reason, a device to adjust the filter angle prior 
to sample measurements was built This device consists of a micrometer-driven adjustment for the MOE 
angle. When the MOE was installed in the optical block shown in Figure 1, the optical block was 
transferred to the original spectrometer and adjusted with the micrometer-driven tool to match the 
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wavelength axis with the design as closely as possible. After adjustment, the MOE was locked in place ana 
transferred back to the optical system for measurements. 

f. Analysis of Quaternary Dye Mixture: In order to gauge the results of the MOC measurements (using 
the apparatus in Figure 1 fitted with the fabricated MOE) against conventional multrvariate calibration, 
conventional PCR regression analysis was carried out on the same dataset used for MOE design. A PCR 
calibration of the Cu-U concentration (requiring 5 factors) was initially carried out with detector response 
profiles that are obtained by the convolution of the measured transmittance spectra with the radiometric 
quantities described above. This produced a SEP of 0.31 uM in Cu-U. The SEP produced from the SVR 
MOE design was 0.60 uM. This fairly large difference between this value and the PCR value is because the 
SVR algorithm is constrained to produces an MOE regression vector that is easiest fabricate (within the 
limitations imposed by the sputtering system). Other MOE designs are possible that compare more 
favorably with the PCR calibration vector, but these are not necessarily the easy to make. Planned upgrades 
to the hardware would allow us greater latitude in using better MOE designs. 

The theoretical SEP for our 26-layer SVR MOE is based on spectra obtained on a conventional 
spectrometer. To evaluate the way in which a real MOE will operate, we should consider the source of the 
SEP. If, for instance, 0.26 uM is an SEP attributable to model errors (as is probably the case here), then a 
real MOE-based device could produce an actual SEP no better than this value. In other words, if model 
errors are responsible for the SEP, then the theoretical (model) SEP is a lower-bound for the real SEP. 
Errors in the production of the MOE or errors in the calculations preceding the model could negatively 
impact the result, but probably not improve it On the other band, if the SEP is not limited by model error 
but by signal to noise in the original measurements on conventional instruments, an MOE could 
conceivably improve the result As described in reference 5, MOEs are far less sensitive to detector noise 
contributions and low light levels than are conventional spectrometry systems. In general, UV-Vis 
spectroscopy and modeling is not limited by noise but by model errors. Thus, we should anticipate that our 
actual MOE will not miraculously reduce the expected SEP. 

Determination of Copper Uroporphyrin with the MOC approach. The difference (in millivolts) in detector 
signals between detectors viewing MOE-reflected vs. MOE-transmitted light that first passed through 
validation samples was measured for 20 samples. These samples were different from those samples that 
were used for MOE design, but were designed with a similar spread of concentration values. 10 of these 
samples were used to evaluate the relative responsivities of the two detection arms of the measurement 
system. To understand this why this is necessary, consider that the two detectors shown in Figure 1 are 
physically different devices and thus can have slightly different relative responses. Since the MOC 
measurement is given by the difference in the two detector responses, a correction factor (K) is necessary to 
give them the same overall gain. With an incorrect value of K, correlation between the detector differences 
and the Cu-P concentration is seriously degraded. Figure 5 shows the optimum correlation obtained 
between the detector differences and BB concentration by giving K=1.18 in the MOC equation: 

C= 1.97 fT-KR) +46.59 (5) 

where C is Cu-P concentration in pM, and T and R are the detector outputs in millivolts. 

The calibration model was tested by using the linear regression model in equation 1 to predict the 
concentrations of the remaining 10 samples. Figure 6 shows a plot of the predicted Cu-P concentrations 
versus the actual Cu-P concentrations using this model. The SEP was determined to be 0.86 uM 

A number of factors exist to explain the disparity between the estimated linear SEP (0.86 uM) for MOC in 
this example and the expected SEP of 0.60 \M. First, we were unable to calibrate the detectors because of 
instrumental limitations. T"»fcq»d, data from the manufacturers specifications were relied upon in 
determining detector spectral response. This information is of a general nature and better results are 
expected when all the individual optoelectronic components used in assembling the MOC measurement 
system are fully calibrated. 
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Figure 1 Schematic of the prototype of a multivariate optical computing device for the measurement of Cu-P in a 
quaternary porphyrin mixture. MOE=multivariate optical element, SC=quartz sample cell, OB=opt1cal block, 
BP=bandpass filter set consisting of two 3 mm schott glasses, CL=achromatic collimating lens, L=Timgsten halogen 
lamp, P=pinhole, Dl/D2= Si photodiode detectors for light radiation transmitted through and reflected from the MOE, 
Fl/F2=focusing lens. 
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Figure 2. Optical transmittance spectra of 40 quaternary mixtures of Uro, Cu-P, Sn-P, andNi-P 
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Figure 5 A comparison of the designed MOE spectrum (dashed line) consisting of 28 alternating layers of Nb,0, and 
SiO,, to the spectrum of the fabricated MOF.fsnlid linri ^^   y ^  5 ^ : spectrum of me fabricated MOE (solid line). 
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Figure 6. Plot of predicted Cu-P concentration (uM) to the actual Cu-P concentration (uM). 
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Abstract. Optical interference coatings are used in filter-based T-format 
fluorimeters to make beamsplitters, bandpasses, and bandblocking fil- 
ters that separate excitation and emission signals. Commercially avail- 
able filters usually perform well in these applications, but better perfor- 
mance may be possible if the system of optical filters is tailored to the 
specific analysis. We provide a general method for designing optical 
filters for the optical train of a specific fluorescence sensor system simul- 
taneously using two light-emitting diode (LED) excitation sources (blue 
and green) and two different fluorescent indicators. We approach the 
problem of designing the optics of the system by first constructing a 
hypothetical target spectrum for each filter using the optical spectrum of 
the excitation source, and the excitation and emission spectra of the 
fluorescence sensors. Structural designs for Nb205/Si02 multilayer inter- 
ference filters are then synthesized. An iterative evaluation procedure is 
then used to improve the performance of the system for minimal leakage 
of the excitation sources onto our detector array. We also provide ex- 
perimental results for the construction of these filters using reactive mag- 
netron sputtering. © 2001 Society of Photo-Optical Instrumentation Engineers. 
[DOI: 10.1117/1.1367255] 
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1   Introduction 

One common type of optical instrument is the filter-based 
T-format (an epi-illumination geometry) fluorimeter. The 
purpose of such an instrument is to either directly measure 
an analyte's fluorescence intensity, or to interrogate a fluo- 
rescence transducer that is sensitive to an analyte concen- 
tration or an environmental condition, e.g., temperature. A 
basic T-format instrument has three arms: the excitation, 
detection, and sensor arms. It normally uses a beamsplitter 
of some type to separate the beam paths of the excitation 
and detection arms of the instrument, while combining 
them into a single optical train on the sensor arm. Optical 
filters are incorporated into these instruments because they 
reduce costs, have higher throughput efficiencies, and are 
smaller and thus more portable than other wavelength se- 
lection devices. Commercially available optical filters make 
the job of constructing a basic T-format system simple: 
once the excitation and emission wavelengths are defined 
for the sensor arm, and the excitation source and detector 
are selected, adequate filters for the application are often 
available from various companies that manufacture 
multilayer interference filters. A number of companies pro- 
duce optical filters specifically for T-format instruments, 
among which are Omega Optical, Inc., Chroma, Inc., and 
Corion, Inc. 

The recent introduction of fiber optic-based sensors for 
the measurement of various analytes using arrays of differ- 
ent fluorescence transducers1"11 has complicated the design 

of these systems. For example, recent work by Walt 
et al. focuses on previously developed "artificial nose" 
technology to detect low-level nitroaromatic vapors that 
may be present on the soil surface above buried land mines. 
This work employs an array of multiple transducer types 
for vapor detection by computational analysis.6"11 Many of 
the available fluorescence-based transducers have different 
optimal excitation and emission wavelengths. One possible 
approach to instrument design for these array-based sensors 
is, in effect, to design a separate T-format system for each 
transducer. The basic concepts governing the design of 
such instruments is well known.1213 Another approach is to 
design more complex optics that permit a single instrument 
to excite and detect fluorescence of multiple transducers 
and/or analytes. 

The complex combinations of excitation and emission 
spectra possible for these arrays has prompted us to inves- 
tigate systematic means for filter selection or synthesis in 
systems combining fluorescence sensors with very different 
spectroscopies. It is often possible to retain the simple lay- 
out of a filter-based T-format instrument even when mul- 
tiple excitation and emission bandpasses are needed. The 
purpose of the present report is to illustrate an integrated 
method for designing a complete system of optics for a 
sensor array, considering the details of light sources and the 
spectroscopies of more than one transducer type. In the 
following discussion, we consider a recent sensor package 
for 2,4,6-trinitrotoluene (TNT) vapor detection that resulted 
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Sensor 

camera 

Fig. 1 Schematic layout of the filter-based fluorimeter described in 
the text. F1-F5 are optical interference filters. The sensor is an 
array-type sensor containing two different optical transducers, Poly- 
mer #58 (MIT) and Nile Red-coated microspheres (Tufts). The cam- 
era is a charge-coupled device (CCD) Epoch, Inc.(CA) Pixel™ CCD 
camera 192x 165 pixels with off chip binning. F1 and F2 are a band- 
pass and a beamsplitter, respectively, to excite Polymer #58 with a 
blue light-emitting diode (BLED). F3 and F4 are a bandpass and 
beamsplitter, respectively, to excite Nile Red with a green LED 
(GLED). F5 is a filter to select the emission wavelengths of both 
fluorophores. 

from a collaboration between Tufts University, Lawrence 
Livermore National Laboratory, and the University of 
South Carolina, as an example of a more complicated sen- 
sor package. A schematic diagram of the sensor optical 
train is shown in Fig. 1. We show how the spectroscopy of 
the components of the system can be combined to form an 
initial target for the spectra of the necessary filters, how 
such filters can be designed with the aid of a computerized 
synthesis program, and how the iteration of the resulting 
initial designs can be refined. After this, we compare the 
spectra for real filters made in our laboratory to the targets 
that they were intended to approximate. 

2   Experimental 
Excitation and emission spectra for the Nile Red porous 
silica microsensors and Polymer #58 were acquired using a 
single-core optical fiber and a double-monochromator fluo- 
rescence system as described previously.14 The Nile Red 
microbead sensors were electrostatically fixed to the distal 
tip of a 150-fim single-core optical fiber and placed onto 
the double monochromator system. For Polymer #58, a 
1-mg/mL stock solution in toluene was used to dip and 
spin-coat the polymer onto the distal tip of the single-core 
optical fiber before positioning it onto the system. The ex- 
citation spectrum for each sensor type was recorded at the 
emission maximum and vice versa for the emission spec- 
trum. A photomultiplier tube (PMT) detector was employed 
for detection. 

Optical filters were designed using TFCalc™ software 
(Software Spectra, Inc.) based on target excitation and 
emission profiles for sensory materials provided by MIT 
and Tufts (see Fig. 2). The spectra of the blue and green 
LED excitation sources (Nichia, Inc.) used in the instru- 
ment are shown in Fig. 3. These curves were obtained from 

150x10 

a 
I io<r 

5<r 

l\ ■ \ 

/ I .'     \ 
i    \ «S8M  ( 

/     ! 

/58X   1 

700x10 

-  600 

"  500    -7 

400 

300 

-  200 

100 

400 
—!  

450 
—J— 

500 550 

Wavelength (nm) 

~l— 
600 

—I— 

650 
-r 

700 

Fig. 2 58X is the excitation spectrum of Polymer #58, detected at 
the peak emission wavelength. 58M is the emission spectrum of 
Polymer #58, excited at the peak excitation wavelength. NRX is the 
excitation spectrum of Nile Red on silica beads, detected at the 
emission maximum. NRM is the emission spectrum of Nile Red on 
silica beads, excited at the excitation maximum. The left-hand inten- 
sity axis is for Nile Red curves, while the right-hand axis is for Poly- 
mer #58 curves. 

a calibrated fluorimeter constructed in-house based on a 
double-monochromator (SPEX, Inc.). The values of param- 
eters obtained for a refined filter design from the TFCalc™ 
software form the basis for our experiment. Software pro- 
vides the physical thickness as well as the optical thickness 
of each layer of a multilayer system of a filter design. 

Reactive magnetron sputtering (RMS) is used in our 
laboratory to construct the interference filters. RMS is a 
room-temperature process for depositing thin films of 
simple compounds, beginning with elemental targets ame- 
nable to sputtering. Our system (Model CVC 5.1) was cus- 
tom manufactured by Corona Vacuum Coaters of Vancou- 
ver, B.C., and uses a 40-kHz mid-frequency RF supply to 
power four water-cooled planar magnetrons positioned in 
pairs around a rotating drum with a horizontal axis. The 
22-in.-diam, 20-in.-deep chamber of our system contains 

"i 1 r 
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Fig. 3 Emission intensity of blue (B) and green (G) light-emitting 
diode sources used in the system shown in Fig. 1. Intensities are 
scaled to be relative to the maximum of each curve. 
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two 4X10 in. magnetrons with niobium (high index) tar- 
gets and two with silicon (low index) targets. 

In RMS, argon ions are ionized and entrained in a mag- 
netic field, after which they collide with the surface of a 
target. In our system, the targets are 99.95% purity niobium 
and 99.9999% purity silicon. If the chamber atmosphere is 
free of oxygen, films of the pure materials are deposited. 
When 02 is added to the gas mixture, the deposited film 
can be continuously oxidized as it forms. RMS is a rela- 
tively slow deposition process, but it yields very high qual- 
ity films with low porosity and near-bulk optical constants 
that are nearly invariant with increasing deposition time. 
The surface roughness of these films is exceptionally low, 
and the deposition rate is extremely stable compared to 
evaporative sources. Unlike evaporative sources, the rate of 
deposition is almost linearly dependent on the power sup- 
plied to the magnetrons. 

The substrates used to fabricate our filters were 1-in.- 
diam BK-7 glass optical flats (Esco Products, Inc.). These 
substrates were mounted on a 14-in.-diam rotating drum 
shaped like an octagonal prism. The substrate size is very 
small compared to the area of the magnetron sources and 
the rotational motion of the substrate drum enables the pro- 
duction of very uniform thin films. 

Deposition rates for niobia and silica via RMS are given 
in nanometers per kilowatt-toggle, where the unit "toggle" 
represents a single sweep of the substrate through the depo- 
sition zone. The deposition rate for Nb205 (4.62 nm per 
kW-toggle) and Si02 (10.45 nm per kWtoggle) was mea- 
sured for the instrument prior to manufacture of the 
multilayer films, providing an estimated deposition time for 
each layer of the film. Baseline oxygen and argon flows 
were set to optimal values for each material. In the case of 
Nb205, the 02 flow was set 3.4 to standard cubic centime- 
ters per minute (SCCM) and the argon flow was set to 2 
SCCM. For production of Si02, the 02 flow was set to 3.5 
SCCM and Ar flow was set to 2 SCCM. Initial power input 
for the targets was set to 0.7 kW for both targets. The total 
gas pressure in the system was approximately 7 millitorr 
during sputtering. 

3   Results and Discussion 

3.1    Overview 

The optical sensing system described in Fig. 1 operates by 
measuring the change in fluorescence intensity of two fluo- 
rescence sensors. The first of these transducers is a disper- 
sion of Nile Red dye on porous silica microspheres. The 
fluorescence excitation and emission spectra shown in Fig. 
2 for this sensor are for Nile Red dye on OH-terminated 
silica surfaces. The second transducer is a fluorescent poly- 
mer (Polymer #58) prepared by the group of T. Swager at 
MIT, similar to materials previously reported.15-17 Both of 
these sensors exhibit fluorescence quenching or enhance- 
ment when they are in the presence of vapors to which they 
are sensitive, although details of the mechanisms are in- 
complete. 

Nile Red is a common dye for which T-format systems 
have long been developed. Omega Optical, Inc. (http:// 
www.omegafilters.com), for example, offers a filter set 
(XF35) that would serve to effectively measure the fluores- 

cence of Nile Red alone. Another Omega Optical filter set 
(XF18) could be used for Polymer #58 alone. 

However, from the standpoint of the optical system de- 
sign in Fig. 1, simultaneous excitation and detection of the 
signals from these two sensors are somewhat challenging. 
This is because they require two different excitation bands, 
two different emission bands, and one of the emission 
bands is interposed between the two excitation bands. 

3.2   Initial Design 

The blue light source in Fig. 1 is used to excite the Polymer 
#58 sensor, while the green source is used to excite the Nile 
Red sensor. The initial design of the optical filters for the 
instrument described in Fig. 1 is only intended to list the 
desired bandpasses and bandblocks for each filter. For ex- 
ample, Fl in Fig. 1 is the "blue bandpass," and is intended 
to select the useful portion of the emission of the blue light- 
emitting diode source, while blocking any wavelengths that 
are not important to excitation of Polymer #58. In wave- 
length regions where the blue source has no intensity, the 
transmission and blocking of filter Fl does not matter. F2 is 
more complicated because it is active at every wavelength: 
this is the "blue beamsplitter" that reflects the blue exci- 
tation toward the sensor array, while allowing all other 
wavelengths to pass through. The reflection of the blue ex- 
citation should be very high, since this filter is the first line 
of defense to prevent blue scattered light from reaching the 
detector ("camera" in Fig. 1). The wavelengths at which 
the sensors emit should have the highest possible transmis- 
sion, since returning luminescence from the sensors must 
pass through six filter interfaces before it can be detected. 
The wavelengths at which the green light source emits 
should also be represented by high transmission in F2, be- 
cause any loss will reduce the excitation of the Nile Red 
sensors. 

F4 as shown in Fig. 1 is the "green beamsplitter." It is 
intended to pass the emission bands of both sensors as well 
as possible while reflecting the green excitation wave- 
lengths as completely as possible. This last requirement is 
because, like F2 for short wavelengths, F4 is the first line of 
defense preventing backscattered green excitation light 
from returning to the detector. F3 is the "green bandpass," 
and selects the useful part of the illumination from the 
green light-emitting diode, while blocking wavelengths at 
which the two sensors emit light. 

F5 is the most complex of all the five filters, because it is 
the final defense of the detector from backscattered excita- 
tion from both LED sources, and must simultaneously ex- 
hibit high transparency to the emission from both sensor 
types. 

From the preceding considerations, it is apparent that a 
reasonable first guess of the optimal properties of our filters 
is as shown in Fig. 4. 

3.3   Initial Synthesis 

Synthesis, in the context of this report, refers to the theo- 
retical design of a multilayer filter with a given spectrum. 
The determination of the spectral characteristics of a given 
multiplayer layer is straightforward, while the determina- 
tion of the structure of a multiplayer filter that fits a specific 
spectrum is far from straightforward. Only an approxima- 
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Fig. 4 Initial targets for the spectra of F1 to F5. Curves are offset for 
clarity; each begins at zero and rises to a maximum of 100% trans- 
mittance. 

tion of a given spectrum is generally possible within the 
limits of what can be achieved with current multilayer 
deposition technologies. 

We can make a few general points about the relationship 
between spectral characteristics and film structure that gov- 
erns whether a given spectrum will be achievable. One 
equation that describes this relationship from a theoretical 
standpoint was provided by Sossi and Verly and 
Dobrowolski19: 

In 
'n(x) 

■L.l 
Q(or) 

exp( — i2Trcrx)dcr, (1) 

where u= 1/X, n0 is the refractive index of the surrounding 
media, X is the wavelength, n{x) is the refractive index 
profile of the multilayer, x is twice the optical thickness: 

I I   n(u)du, 
Jo 

(2) 

z is the physical thickness, and Q(a) is a spectral function 
that is empirically related to the transmittance of the 
multilayer film stack. The origin for x and z is in the center 
of the film. From a fabrication standpoint, achieving the 
continuous variation of refractive index implied by Eq. (1) 
is difficult to achieve. Also, there is a maximum practical 
thickness for a multiplayer filter beyond which the films 
will delaminate from trie substrate, this thickness being 
somewhere near 10 to 25 /am. 

The relationship in Eq. (1) is a Fourier transform rela- 
tionship between the transform pair ln[n(x)/«0] and 

Q(a)/a. This equation implies that sharp variations in the 
transmission spectrum of a film require a thick multilayer. 

However, as Refs. 19 and 20 make clear, £20) is a func- 
tion that changes rapidly when transmittance is small. This 
means that a sharp feature at low transmittance requires a 
thicker film than the same feature at low transmission. The 
dependence on the wavenumber a in Eq. (1) means that a 

'S 

500 550 600 
Wavelength (nm) 

650 700 

Fig. 5 Initial fits to the target spectra for F3, F4, and F5 obtained by 
filter synthesis. Curves are offset for clarity, with the center curve 
offset by 100% and the upper curve by 200%. 

sharp feature at long wavelengths requires a thicker film 
than the same feature at a shorter wavelength. As a general 
rule of thumb, sharp features and low transmittances are 
difficult to achieve, and a combination of sharp features and 
low transmittance is especially difficult. 

From the standpoint of ease of manufacture, our initial 
spectral targets present some obvious problems. All call for 
"zero" transmittance, and there are sharp edges at zero 
transmittance for all. To find spectra and structures for real 
filters that will fit our purposes, we take these targets and 
attempt to synthesize best-fit spectra for filters with reason- 
able thicknesses. 

A requirement of low transmittance in some spectral re- 
gions places constraints on the maximum transmittance that 
we can expect in the bandpasses of our filter set. It is rela- 
tively easy to achieve high compared to low transmittances. 
Our best performance is likely to result by only requiring 
low transmittances where they are truly necessary. Thus, 
we can focus our efforts primarily on the problem of block- 
ing the backscattering of the light sources to the detector. 
This strategy is also reasonable from the standpoint of im- 
proving the signal-to-background ratio for the optical sys- 
tem, which is more amenable to improvement by reducing 
the background toward zero than by increasing the signal 
level toward 100%. When we turn our attention to source- 
blocking subsets of our original five-filter problem we can 
identify two workable subsets, namely the F1-F2-F5 and 
the F3-F4-F5 filter subsets. These have critical low trans- 
mission specifications in the blue and green spectral re- 
gions, respectively. For simplicity, we restrict our further 
discussion only to the F3-F4-F5 set, since the F1-F2-F5 
filter set is treated analogously. 

Using TFCalc™, a commercially available thin-film de- 
sign program, we obtain the initial spectral set shown in 
Fig. 5 for the F3-F4-F5 filter set. Since TFCalc™ requires a 
tolerance value for each wavelength, a larger tolerance, 
e.g., 25%, is permitted for high-transmission wavelengths 
than for low, e.g., 0%. This is consistent with our prior 
arguments that the low transmission regions will be simul- 
taneously more difficult to achieve and more important to 
improving the signal to background ratio of the optical sys- 
tem. 

Optical Engineering, Vol. 40 No. 6, June 2001     891 

87 



Karunamuni et al.: Interference filter refinement. 

Since our best-fit spectra cannot be the same as our tar- 
gets in Fig. 4, they will not perform as well as the targets: 
they will not transmit as much of the fluorescence signal 
back to the detector, and, more importantly, they will per- 
mit some light from the excitation sources to leak back to 
the detector. For this reason, we will employ an iterative 
solving procedure to refine the result of our initial "synthe- 
sis" of the filters. In this procedure, we: 1. isolate the re- 
gions of the spectra that are most offensive: 2. identify the 
filter(s) that are supposed to clean up this spectral region: 3. 
modify one or more of the filter spectra accordingly: and 4. 
resynthesize the filter(s). 

3.4   Performance Evaluation 
We need to define a metric to determine in which regions 
of the spectra the filters are performing poorly. Since our 
arguments regarding the quality of the optical system re- 
volve more around leakage of the excitation sources into 
the detector than on total signal levels, we define our metric 
with this in mind. The leakage of the green light source into 
the detector, for example, should be prevented by the F3- 
F4-F5 combination of filters. Because proper internal baf- 
fling should prevent off-axis scattering into the detector, we 
neglect scattering produced by light that passes through F4, 
strikes the opposing wall of the optical block, and then 
scatters into the detector past F5. Our major contributor to 
background from the excitation sources will be from on- 
axis light from the source that passes through F3, reflects 
from F4, backscatters from the sensor, passes through F4, 
and then passes through F5 to reach the detector. The back- 
scatter from the sensor may have a wavelength dependence, 
but this is unknown and omitted. For both filter sets, the 
excitation light must also pass through the beamsplitter of 
the other set before reaching the camera. The beamsplitter 
of the other set is not designed to block this radiation, and 
therefore it is also omitted from the calculation of perfor- 
mance. Our performance factor is derived from the product 
of the spectrum of the light source, G(X), with the trans- 
mittance of the optical train for scattered light. This latter 
factor is itself a product of other terms, so our performance 
factor can be written in the form: 

r(X)=G(X)7V3(X)ÄF4(x)7v4(MrF5(\), (3) 

where y is the performance factor as a function of wave- 
length, TFn is the transmittance (on a scale of 0 to 1) of 
filter Fn, and R Fn is the reflectance of the filter. Reflec- 
tance and transmittance of an all-dielectric filter sum almost 
exactly to unity, and therefore we can calculate y for our 
green filter subset by curve y\a\^ in Fig. 6. In general we 
could also include detector spectral responsivity in this 
equation. In this particular case, the CCD camera spectral 
responsivity varies only slightly across the spectrum of the 
fluorophores, so we have not included it. 

3.5   Iteration 
The initial estimation of leakage in Fig. 6 shows that most 
of the leakage for this filter subset would come from the 
530 to 560-nm region. This region should be transmitted by 
F3, and therefore no change to F3 is required. F4 and F5 
are both supposed to be high reflectors in this wavelength 
range, and we iterate the filters by tightening the constraints 

—i— 

460 

—i— 

480 

—I 1 1— 

500   520   540 
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580 600 

Fig. 6 Performance factor plots for green backscatter in the optical 
system. The upper curve, labeled ym(al, is for the filters in Fig. 5. 
The lower curve is the result after improving F3 and F4. 

on F4 and F5 in this wavelength region while relaxing them 
further in their high-transmission windows. When we re- 
synthesize the filters, the leakage calculated from Eq. (3) 
using the revised filters becomes the curve shown as y2 in 
Fig. 6. The structure of one of these filters, F5, is shown in 
Table 1. 

3.6   Construction 
Once an appropriate set of filters has been defined and their 
structures known, they must be fabricated. Using manual 
control of the deposition, we deposited the 19-layer struc- 

Table 1 Films thicknesses in nanometers for filter F5. Layers are 
numbered from the substrate outward. Optical thickness is calcu- 
lated at 550 nm. 

Layer no. Material Physical thickness Optical thickness 

1 Nb205 191.74 3.2302 

2 SI02 85.87 0.9087 

3 Nb205 50.75 0.8551 

4 sio2 80.94 0.8565 

5 Nb205 48.68 0.8201 

6 SI02 78.15 0.827 

7 Nb205 108.99 1.8361 

8 SI02 79.06 0.8366 

9 Nb2Os 50.89 0.8574 

10 SI02 86.69 0.9173 

11 Nb205 52.1 0.8778 

12 SI02 88.41 0.9356 

13 Nb205 53.01 0.8931 

14 SI02 89.57 0.9478 

15 Nb205 205.4 3.4603 

16 SI02 85.13 0.9009 

17 Nb205 50.68 0.8538 

18 SI02 82.84 0.8766 

19 Nb2Os 51.13 0.8614 
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Fig. 7 Theoretical filter spectrum for F5, and an experimental result 
for a typical deposition run. 

ture described in Table 1 and generated a filter with the 
spectrum shown in Fig. 7. Although similar to one another, 
the theoretical and experimental spectra are not identical. 
This is because, after 19 layers of deposition, the spectra 
are sharper in the wavelength domain than the resolution of 

the spectrometer we use for monitoring. Improved spectral 
fits could be expected from monitoring through "witness 
samples" that are changed after every ten layers or so. 
Even with this level of precision the results are adequate for 
our system design. 

3.7   Instrument Performance 
The Fig. 1 instrument can be used as an artificial nose 
through measurement of the spatially distributed response 
of the fluorophores to analytes. Operation of the instrument 
is accomplished by exciting the fluorophores and recording 
the changes in intensity of their fluorescence as a function 
of exposure to various vapors. The Nile Red sensors, for 
example, respond differently depending on the environment 
in which the Nile Red dye is deposited. Thus, different 
substrates for the Nile Red produce different relative re- 
sponses. Polymer #58 has its own relative set of responses 
to analytes. Interpretation of the data produced by the in- 
strument is based on pattern recognition and measurement. 

The performance of the instrument with explosives va- 
pors is the subject of another manuscript.21 The perfor- 
mance with different fragrances is the subject of yet an- 
other manuscript.22 In both studies we were able to show 
that pattern recognition based on the sensor responses could 
selectively identify and even quantify (within limits) vapor- 

0.1     0.3 

Fig. 8 System performance. The responses of a sensor set to five samples of perfumes from the 
same manufacturer. The large number of samples that cluster together and which are surrounded by 
a solid line are measurements of air, a clean cotton pad, and the nitrile gloves used by the scientist 
performing the experiment. The clusters of three points with dashed circles around them are labeled 1 
through 5 for the fragrance they represent. The three axes are the magnitudes of three major spatial 
patterns in the camera images of the sensor set following exposure to the fragrances. Details on the 
fragrances, sensors, and data analysis are given in Ref. 22. 
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phase analytes. An example is shown in Fig. 8, taken from 
Ref. 22. In this figure, the responses of a sensor set to 
samples of perfumes are recorded, as well as the responses 
to blank samples of different types. The axes for this plot 
are magnitudes of spatial patterns measured in the system 
response of the "artificial nose" array. Reference 22 con- 
tains more complete information about this result. 

4   Conclusions 
A systematic procedure can be followed for designing thin- 
film multilayer interference filters for complex optical sys- 
tems such as those that may be required by arrays of fluo- 
rescence sensors. The method we describe here is a very 
user-intensive procedure, involving off-line synthesis of fil- 
ters after evaluating performance based on an empirical 
factor. 

It is likely, however, that the basis for this technique can 
be incorporated into an automated process that works alone 
or in concert with a thin-film design program such as TF- 
Calc™. The matrix mathematics by which the transmission 
spectra of multilayer stacks are calculated are straightfor- 
ward, so an automatic synthesis of several filters that work 
in concert in a set is reasonable, within limits. Input to such 
a system could consist of a listing of the required zero- 
transmission regions for each filter, plus a definition akin to 
Eq. (3) by which the quality of the stack can be judged. 
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Abstract 

A single-element approach to multivariate optical computing is described. Data for mixtures of Crystal Violet and Bismarck 
Brown dyes are analyzed as an example application. Radiometrie information is combined with transmission spectra of the 
samples to obtain representative system responses for the samples. Direct synthesis of a multivariate optical element (MOE) is 

compared to a novel new approach for synthesizing simpler MOEs. The results show that less complex spectral vectors can be 
designed that perform adequately in this example. Experimental results for fabrication of an MOE are shown. © 2002 Published 
by Elsevier Science B.V. 
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21 1. Introduction 

22 Multivariate spectroscopy is a powerful tool for 

23 analytical determinations of the chemical and physical 

24 characteristics of a wide range of sample types. In one 

25 common approach for applying multivariate modeling 

26 to chemical problems, a spectral pattern that correlates 

27 with a dependent variable is found. In subsequent 

28 measurements of unknown samples, predictions of 

29 the dependent variable are made by computing the 

30 magnitude of this spectral pattern in the optical spec- 

31 trum of the unknown. 

32 After collecting spectra of solutions containing 

33 various amounts of the component of interest and 
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Myrick), 

interferent(s), principal component analysis (PCA) 34 

is used to decompose this set of independent variables 35 

into a set of principal components (PCs). These PCs . 36 

are linear combinations of the original variables and 37 

can be thought of as a new set of orthogonal axes in the 38 

space defined by the original spectra and their detector 39 

channels. The primary axis, PCI, is the vector which 40 

describes the greatest variability in the data, while 41 

each successive PC describes smaller variability. Prin- 42 

cipal component regression (PCR) is then used to 43 

relate the dependent variable (concentration of a 44 

component of interest) to the independent variables 45 

(the coordinates of each spectrum on the PCs). A 46 

regression vector is determined in this way which 47 

correlates with the dependent variable. A calibration 48 

curve can then be created by taking the direct product 49 

of each spectrum and the regression vector. 50 

A recent report from this laboratory [1,2] describes 51 

an all-optical interference-filter-based approach to the 52 

last step in this procedure, the magnitude calculation 53 

1 0924-2031/02/$ - see front matter © 2002 Published by Elsevier Science B.V. 
2 PII: S0924-2031(01)00!60-6 
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T= 0.5 +L/2 
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Light source 

R = 0.5 - LI2 

Fig. 1. Schematic diagram of a simple single-element system for the prediction of chemical properties based on the transmission spectroscopy 
of samples in cuvettes. In this design, MOE is the multivariate optical element, the bandpass selection filters are simple colored glass filters 
that roughly limit the spectral window, the detectors are matched, T and R stand for transmittance and reflectance on the scale of zero to one, 
and L is the scaled regression vector of the MOE. 

54 given by the product of a regression vector with the 
55 spectrum of an unknown sample. The idea of using 
56 incoherent linear optical signal processing (OSP) for 
57 computation of an analytical parameter in a sample 
58 mixture was described as early as 1986 by Bialkowski 
59 [3]. An alternative to digital signal processing, linear 
60 OSP allows for the calculation of the product of two 
61 vectors by passing light with an intensity representing 
62 one vector (here, the spectrum of the unknown sam- 
63 pie) through a filter with a transmittance representing 
64 a second vector (the regression vector). Our approach 
65 centers around the production of one or more optical 
66 interference  coatings  (MOEs)  whose  transmission 
67 spectra incorporate features of the spectral regression 
68 vector. The MOE consists of a substrate, such as glass, 
69 on which are deposited a series of thin film layers with 
70 differing optical properties. The thicknesses of the 
71 layers are designed so that the spectrum of the MOE 
72 matches a predetermined spectral profile that incor- 
73 porates features of the regression vector. The design is 
74 such that there is a linear relationship between the 
75 component of interest and the transmittance through 
76 the experimental apparatus containing the MOE. 
77 The original report makes use of a two-filter all- 
78 optical design, in which the spectral pattern is divided 
79 into positive and negative "lobes", each of which is 
80 transferred to a separate filter design. This approach, 
81 although workable in some cases, suffers from a 
82 fundamental problem. When multiple reflections are 
83 neglected, the Fourier spectrum of a target spectrum is 
84 directly related to the refractive index profile of a 

coating designed to match that target [4]. The process 85 
of separating the positive and negative portions of a 86 
regression vector from which tuo filters are designed 87 
introduces an unavoidable discontinuity in the target 88 
transmission profile at the points where the regression 89 
vector crosses zero. The result is tuo filters that each 90 
contain discontinuities in the slo[x-s of [heir transmit- 91 
tance spectra at the points where the transmittance 92 
reaches zero. These discontinuities introduce very 93 
high Fourier frequencies in the tiller spectrum, neces- 94 
sitating thick filters. 95 

The present work describes .1 desii'ii alternative that 96 
resolves some of these problem*   I he concept behind 97 
this approach is shown in I-ij'   1   In the neu concept, a 98 
target spectrum is generated MI,!; tlu; .1 snide filter, 99 
operating as a beamsplitter, c.n; !un. turn eflectively in 100 
the same role as two fillers 11, the oriental report. 101 
Further, the single-filter desien icLv.'s some of the 102 
constraints present in the tuo tilier desien 103 

2. Experimental 104 

A Hewlett-Packard UV-YIS diode .m.n spectro- 105 
photometer Model 8543 was IM\: I,. tolled transmis- 106 
sion and absorption data on hm..r. du- mixtures for 107 
this  study.  A  compact  proton ;v   lielJ   instrument 108 
(Fig. 1) was designed and constricted lor this project 109 
to show proof of concepi   usine   Linos   Photonics 110 
(Milford, MA) optical components  Tin- characteris- 111 
tics of bandpass filters, lamps and detectors in the 112 
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113 prototype instrument were used to convert transmit- 
114 tance spectra of calibration samples into detector 
115 spectral responses. 
116 A 6 V/6 W tungsten filament lamp with 1 mm x 1.2 
117 mm active filament area was used as a light source in 
118 the Fig. 1 instrument. The spectral radiance of the 
119 lamp was measured in watts per (steradian x cm2 x 
120 nm) with a CCD spectrometer system (consisting of a 
121 Chromex 250IS spectrometer with 300 gr/mm grating 
122 and a Princeton Instruments 1100 x 300 pixel CCD 
123 camera, model TE/CCD-1100-PE). The input optics 
124 on the spectrometer system were duplicates of the 
125 Fig. 1 system. For these measurements, the operating 
126 voltage for the lamp was fixed at 5.76 V. The wave- 
127 length range of the CCD camera/spectrometer system 
128 was calibrated with a standard mercury penray lamp 
129 and a standard neon lamp. The spectral radiance of the 
130 lamp under these conditions was calibrated against a 
131 OL series 455 integrating sphere calibration standard 
132 lamp (Optronic Laboratories, Inc.) operated under 
133 standard conditions. 
134 The two Si photodiode active detectors were type 
135 BPW21 with a sensitive area of 2.7 mm x 2.7 mm, 
136 spectral range 320-820 nm and radiant sensitivity at 
137 the peak wavelength (550 nm) of 3.8 V/mW. The 
138 relative signal intensity (detector response) versus 
139 wavelength was estimated from a Linos Photonics 
140 data sheet with values measured at 25 °C and 12 V dc 
141 supply voltage. 
142 The filter band pass set, used to isolate the spectral 
143 region between 400 and 650 nm, consisted of two 
144 3 mm thick Schott glass filters (Duryea, PA) BG-39 
145 and GG400. 
146 The binary dye mixtures used for initial testing of 
147 our MOC filter design were prepared from two water- 
148 soluble dyes obtained from Aldrich, Bismarck Brown 
149 Y (BB) (maximum 457 nm, dye content 50%) and 
150 Crystal Violet (CV) (maximum 590 nm, ACS reagent 
151 dye content 95%). Stock solutions in distilled water of 
152 BB at 6.72E-5 M and CV at 1.64E-5 M were pre- 
153 pared. Then random numbers were generated and 
154 applied to the concentrations of the dyes with dilution 
155 to determine that the relative concentrations of the two 
156 dyes were varied independently. In the dilution pro- 
157 cess transmission values were kept between 10 and 
158 90% in the mixtures. In this manner 40 binary dye 
159 solutions were prepared and their transmittance spec- 
160 tra were measured. After the samples were made and 

measured, PCA was performed to show that the data 161 
were linear with respect to component concentration. 162 
Twenty-five of these spectra were used to generate a 163 
regression vector and 15 were kept as a test set. 164 

TFCalc™, a commercial software product from 165 
Software Spectra, Inc. (Portland, OR) was used to 166 
synthesize multilayer thin film designs to match a 167 
spectral target. An in-house thin-film design program 168 
written in the MATLAB programming environment 169 
was used to design "relaxed" multilayer structures for 170 
chemical prediction. \i\ 

3. Results and discussion m 

Fig. 1 shows the experimental set-up for imple- 173 
menting the single-filter design in a simple transmis- 174 
sion measurement. In this system, a spatial filter and 175 
collimating lens is used to restrict the angular disper- 176 
sion of light reaching a single filter. A single optical 177 
element is used in a beamsplitter arrangement, with 178 
part of the light passing through the sample being 179 
reflected and part being transmitted. A similar con- 180 
figuration was reported by Ryabenko [5]. The spec- 181 
trum of the 45° optical element is designed to be 182 
precisely T(L) = 0.5 ± L{X), where T is the filter 183 
transmittance and L is proportional to the loading 184 
of a spectral vector obtained via principal components 185 
regression of a chemical system, or some related 186 
mathematical procedure. In the event that the absor- 187 
bance of the optical element can be neglected (a 188 
reasonable assumption for most oxide materials in 189 
the visible and short-wavelength near-infrared), the 190 
reflectance  is   adequately  represented  by  R(X) = 191 
0.5±L(A). The difference between these values is 192 
proportional to the spectral regression vector, while 193 
the sum of the two is independent of the spectral 194 
vector. In the original report [2], normalization of the 195 
signal was not possible exactly. The independence of 196 
(T{X) + R(2.)) with respect to an arbitrary spectral 197 
vector allows true signal normalization to be per- 198 
formed. 199 

3.1. Radiometrie corrections 200 

The optical computation of chemometric predic- 201 
tions is inherently radiometric in nature rather than 202 
ratiometric. Absorbance is non-linearly related to the 203 
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204 intensity of light passing through a sample and is 
205 difficult to represent exactly. Sample transmittance 
206 is directly related to radiometric quantities in our 
207 measurement scheme. Unfortunately, while Beer's 
208 law relates absorbance linearly to concentration, sam- 
209 pie transmittance is not as simply related. In conse- 
210 quence, the number of principal components required 
211 to describe a radiometric data set is greater than the 
212 number of independent species [6]. 
213 Fig. 2 shows the absorption spectra for two dyes, 
214 Bismarck Brown and Crystal Violet, in the region 
215 between 400 and 600 nm. Fig. 3 shows transmission 
216 spectra for a series of 40 mixtures of these dyes, 
217 mixtures in which the concentrations of the two dyes 
218 are varied independently of one another based upon a 
219 random number generation. Bismarck Brown was 
220 arbitrarily selected as the analyte, while Crystal Violet 
221 was treated as a random interferent. These 40 mixtures 
222 provide a starting point for development of a suitable 
223 regression vector for Bismarck Brown that could be 
224 incorporated into a single-element multivariate optical 
225 element (MOE). 
226 Before calculation of a regression vector, the trans- 
227 mission spectra are converted into system units by 
228 measuring the spectral radiance of the light source to 
229 be used for illumination of the sample, the transmit- 
230 tance of a spectral bandpass filter set, and the spectral 

1.5 

c 
CO 

£1 
< 

 Crystal Violet 
  Bismarck Brown 

V 

450 500 550 

Wavelength (nm) 

Fig. 2. Absorption spectra for solutions of two pure dyes Bismarck 
Brown and Crystal Violet, used in this report. 

sensitivity of the detector selected for the measure- 231 
ment. The product of these factors with the sample 232 
transmittance spectra gives the system-corrected spec- 233 
tra shown in Fig. 4. 234 

3.2. A direct principal components regression 235 
approach 236 

Principal component regression was used to derive 237 
a linear relationship between the concentration of 238 

0.9 

0.8 

0.7 

c a 
0.6 

0.5 

0.4 

T I 1 I I 1 I I I I I I I 

400   420    440   460   480    500    520   540   560    580    600   620    640 

Wavelength (nm) 

Fig. 3. Transmission spectra for 40 mixtures of Bismarck Brown and Crystal Violet using random concentrations of both dyes. The maximum 
concentration of each was limited so that absorbances of the two dyes individually would not be more than 0.3. 
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(a) 

10x10 

400 420 440 460 480 500 520 540 560 580 600 620 640 

Wavelength (nm) 

~i 1 1 1 1 r——i 1 r 
400    420    440    460    480    500    520    540   560    580    600    620    640 

(b) Wavelength (nm) 

80 T 

(c) 

T 1 1 1 1 1 1 1 1 1 r 
400   420    440    460   480    500   520   540    560    580    600    620    640 

Wavelength (nm) 

Fig. 4. Sample spectra used for analysis and target spectra derived from them: (a) sample spectra. These data are based on the transmission 
spectra in Fig. 3, corrected for the instrument response function, taking into account the spectral radiance of the tungsten light source, the 
spectral sensitivity of the silicon detectors, and the transmission spectra of the bandpass filter set described in the experimental section, (b) 
Regression vector for the calibration shown in part a. The vector has been scaled to unit length, (c) Target transmission spectrum for a single- 
element, 45° angle-of-incidence MOE coating based on the regression vector in (b). 
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Fig. 5. Calibration based on Fig. 4 data. Filled Circles, Calibration set; Open Triangles, Validation set. SEP = 0.3 nM for the validation set. 

239 Bismarck Brown and the coordinates of the sample 
240 spectra on each of four principal component axes. The 
241 results of this four-factor PCR of the data in Fig. 4 is 
242 shown in Fig. 5. In this figure, triangles represent 
243 validation samples, while black dots represent cali- 
244 bration samples. The standard error of prediction 
245 (SEP) for this calibration is 0.3 uM. The regression 
246 vector that produces this calibration is shown in Fig. 6, 
247 normalized to unit length. This vector can be used to 

design a MOE by appropriate scaling as in Fig. 7, 248 
which shows a target transmission spectrum for an 249 
MOE based on the Fig. 6 vector. As this figure shows, 250 
all the points at which the vector has a magnitude of 251 
zero correspond to transmittances of 50%. The scaling 252 
of the vector into the MOE is somewhat arbitrary, 253 
limited only by a need to end with realistic transmit- 254 
tance values. For example, too large a scaling factor 255 
from Fig. 6 to Fig. 7 would result in target transmit- 256 

100% 

o 
H 

10% - 

1%- 
T       i       i       i       i       i 1 1       i 1 1 1 r 

400    420     440    460    480     500    520     540     560    580    600     620     640 

Wavelength (nm) 

Fig. 6. Spectral tolerances for the design and fabrication of an MOE for this data set and calibration. Values are inversely proportional to the 
spectral variances, and directly proportional to the SEP. 
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Fig. 7. Direct synthesis solution using the tolerances in Fig. 8 and the target spectrum in Fig. 7. 

257 tances above 100% or below 0%. The practical limits 
258 are about 96 and 0%, since each MOE has two 
259 interfaces (one with the MOE coating and one with- 
260 out), and the uncoated interface will reduce the total 
261 transmitted light intensity. 
262 As a general rule, it is impossible to exactly repro- 
263 duce the target spectrum. How closely the design 
264 much match the target is determined by the SEP of 
265 the calibration. A small SEP corresponds to very small 
266 tolerance for deviations from the target. Large SEPs 
267 correspond to larger tolerances. Fig. 8 shows the 
268 tolerance distribution for this data set and calibration. 

Derivation of the quantitative relationship between 269 
SEP, spectral variance and tolerance is described else- 270 
where [7]. The general trend is that tolerances are 271 
inversely related to spectral variance in the data set, 272 
increasing to large values at the edges of the spectral 273 
bandpass where intensity (and therefore variance) 274 
decreases toward zero. The tolerance calculation pro- 275 
vides a means of defining the "effective bandpass". 276 
The effective bandpass can be defined as the wave- 277 
length window within which manipulation of the light 278 
intensities can introduce relative error equal to or 279 
greater than thes standard error of prediction for our 280 
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Fig. 8. Refractive index profile of the MOE design in Fig. 7. 
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Wavelength (mm) 

Fig. 9. (a) MOE spectrum at 45° angle-of-incidence based on 
vector relaxation from a partial direct solution as described in the 
text. This solution can be construed as the best solution at this level 
of complexity in the MOE. (b) MOE in (a) at normal incidence. 
Dashed line, theoretical; Solid line, experimental. 

281 data model. Conversely, outside the effective band- 
282 pass, the variability of the signal from sample to 
283 sample is too small to matter within the range of 
284 the SEP. In our example the effective bandpass for 
285 the Fig. 4 data is between 423 and 624 nm, since in the 
286 regions 400-423 and 624-650 there is negligible 
287 variability among sample spectra in relation to the 
288 concentration of Bismarck Brown. 
289 Using these tolerances, a suitable design for a MOE 
290 can be developed as shown in Fig. 9a, which gives the 
291 spectrum at 45° angle-of-incidence of the resulting 
292 MOE structure. The structure of this MOE is shown in 
293 Fig. 10 as a plot of refractive index versus physical 
294 thickness,  assuming  layer materials  of Si02 and 
295 Nb205 with refractive indices determined by ellipso- 
296 metry in our laboratory. This design required approxi- 
297 mately   24 h   of   computer   iteration   using   the 
298 commercial software TFCalc™. Qualitatively, a close 

solution to the target was obtained quickly, with 299 
approximately >90% of the iterations used to gain 300 
the last few percentage points of spectral fit to the 301 
target. Further, the solution shown in Fig. 10 includes 302 
46 layers of material with a thickness near 4 (im. In 303 
our deposition system, this would require about two 304 
full days of deposition to achieve. 305 

3.3. A second approach to MOE design: vector 306 
relaxation 307 

Because of the complexity of the direct spectral 308 
matching result given above, a new software approach 309 
to designing MOEs was developed. In this approach, 310 
commercial thin-film design programs like TFCalc™ 311 
are used to give a very approximate solution in a short 312 
time, using a relatively small number of layers. This 313 
result is then used as a starting point for an in-house 314 
algorithm that iterates this structure to find a result that 315 
can be characterized as "the best solution at this level 316 
of complexity". The in-house algorithm is described 317 
separately [8], but uses the original data (Fig. 4) to 318 
optimize the structure of the MOE coating in a way 319 
that minimizes the SEP. Fig. 9a shows the "vector 320 
relaxed" result for comparison to Fig. 7. Although the 321 
"relaxed" result is very different from the target based 322 
on the regression analysis that is given in Fig. 5, Fig. 10 323 
shows that the SEP produced by this vector is equally 324 
good, 0.3 pM. This relaxed design has the benefit of 325 
requiring only 26 layers versus 46 in the direct design, 326 
having a total thickness near 2 urn versus 4 pm for the 327 
direct design, and requiring significantly less compu- 328 
tation time. 329 

3.4. MOE production 330 

The MOEs designed in this report are all specified 331 
to work at 45° angle-of-incidence. Our coating sys- 332 
tern, however, operates best when coating substrates at 333 
normal incidence. For production purposes, we took 334 
the second (smaller, relaxed) structure for the Fig. 9a 335 
MOE and recalculated its optical spectrum at normal 336 
incidence. A multilayer coating was fabricated to this 337 
target, and both the target and experimental result are 338 
shown in Fig. 9b. 339 

Results   from  testing   of this  MOE  have  been 340 
reported elsewhere [9]. Implementation of this type 341 
of all-optical approach to multivariate spectroscopy 342 
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Fig. 10. Concentration of Bismarck Brown predicted with the MOE of Fig. 9 as a function of actual Bismarck Brown concentration 
SEP = 0.3 uM. 

343 has many advantages over conventional computa- 
344 tional methods, including ease of use and higher SI 
345 N ratios. Use of this approach allows the user to 
346 determine the concentration of a component of inter- 
347 est without the use of conventional digital signal 
348 processing or acquisition of a spectrum. In addition, 
349 the need for only one optical element instead of two 
350 provides for less difficult and time consuming fabri- 
351 cation of the MOE as well as a simpler apparatus 
352 configuration. 
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ABSTRACT 

A new algorithm for the design of optical computing filters for chemical analysis otherwise 
known as Multivariate Optical Elements (MOEs), is described. The approach is based on the 
nonlinear optimization of the MOE layer thicknesses to minimize the standard error in sample 
prediction for the chemical species of interest using a modified version of the Gauss-Newton 
nonlinear optimization algorithm. The design algorithm can either be initialized by random layer 
thicknesses or with layer thicknesses that approximate a multivariate principal component 
regression (PCR) vector for the constituent of interest. The algorithm has been successfully 
tested by using it to design various MOEs for the determination of Bismarck Brown dye in a 
binary mixture of Crystal Violet and Bismarck Brown. 

Keywords: optical computing, thin films, chemometrics, spectroscopy, multivariate 

1. INTRODUCTION 

Multivariate calibration is a well-established tool in chemometrics for the correlation of a 
physical or chemical property of interest to multiple wavelength channels of optical spectra. (1- 
3) The conventional application of this tool in chemical analysis entails the acquisition of optical 
spectra in the appropriate wavelength region (typically from the ultraviolet io the mid-infrared). 
Next, chemometric tools such as principal component regression (PCR) and partial least-squares 
(PLS) are used to estimate multivariate regression vectors correlated to the propern o! interest 
but orthogonal to interferences (4). Prediction of the property in an unknown sample is carried 
out by taking the inner product of the spectral pattern in the regression vector w ith the optical 
spectrum of the unknown compound. A major drawback in the widespread use of mu!ti\ariate 
calibration, especially for field applications, is its dependence on expensive and bulky 
laboratory-type equipment for data acquisition and analysis. 

In Multivariate Optical Computing (MOC), spectral patterns are encoded into the transmission 
spectrum of optical interference filters for the purpose of chemical prediction. Lariicr reports by 
Myrick et al. (5,6), have shown that the prediction step in multivariate calibration can be 
optically mimicked by passing light of a fixed bandwidth which has interacted with the sample 
through two optical filters whose combined transmission profiles accurately describes the 

* Author to whom correspondence should be addressed 
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positive and negative portions of the spectral patterns in a multivariate regression vector. A 
more recent study (7) has described a new approach to this method of optical computation that 
uses a single filter for prediction. 

A typical interference filter consists of alternating layers of high- and low-refractive index 
materials with specified thicknesses. Interference coatings with irregular transmittance profiles 
are fabrication through the process of reactive magnetron sputtering (RMS) (8). As was 
originally envisaged, the profile of a pre-determined spectral pattern is transferred to the optical 
coating by a process of iterative synthesis (9). The original filter design technique synthesized a 
multilayer coating that minimized the sum of squared difference between the desired spectral 
pattern (e.g., a multivariate regression vector) and the filter's computed spectral pattern. A 
generic form of the merit function is shown in equation 1, where Z; is the calculated response 
(e.g. filter transmittance) at wavelength j, Zj is the target value, Tol-} is the design tolerance, m is 
the number of discretely sampled wavelengths, and k is a gain factor used to change the relative 
importance of the mismatched regions (with integer values of 1,2,4 or 16). 

F = 
m 

I 
ZD-Z- 

k\Vk 

m .  ,      Tolj 
;=i        J 

(1) 

This approach has been used by Heavens and Liddell (10) to create a filter design algorithm that 
minimizes the following function, 

m o 
F(x)=2J{R0(kk)-R(x,\k)r (2) 

jfc=l 

where x is the vector of design variables, R0 is the specified reflectance at wavelength Xk, and R 
is the computed value of reflectance at A* for particular values of x. For multivariate calibration 
problems, this approach causes problems, however, because complex spectral patterns encoded 
in regression vectors necessitate filters of high complexity with many layers. Multilayer filters 
having an excessive thickness tend to have rough surfaces that scatter incident radiation, absorb 
significant amounts of incident light, and break easily due to increased internal stress. 

As a way of overcoming this limitation in filter design, we present the description of two 
alternative design algorithms that can result in filters having substantially fewer layers. This 
avoids the problems described above, while in many cases, offers better predictive performance 
than filters designed to match PCR or PLS regression vectors. Both new methods employ a 
nonlinear least squares optimization technique to design an optical coating that minimizes the 
sample prediction error for the chemical species of interest. In other words, instead of creating 
an optical coating whose spectrum matches a predetermined regression vector, a coating is 
created whose spectral profile strives to minimize the value of the root mean standard error of 
calibration, RMSEC. 
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2. DESCRIPTION OF FILTER DESIGN ALGORITHM 

2.1. Calculation of filter transmittance 

A fast and efficient method for calculating filter transmittance is crucial to developing an 
algorithm for designing optical filters. The matrix method for calculating the transmittance and 
reflectance of multilayer optical thin films meets these criteria (11), and was incorporated into 
the design algorithm. This method is easily implemented on a digital computer and has become 
the mainstay of most filter design algorithms. In this method, each layer of a thin film stack is 
represented by a 2x2 characteristic matrix (Equation.3), which describes the layer properties at 
particular wavelengths of incident light and at specified angles of incidence. These properties 
include layer thickness, refractive index and the absorption coefficient. 

(3) 3.,+^.. Yia+iYi.2 cos 5 i/rjsinS 

Yu+iY2i J22 +IJ2,2 irj sin S cos 8 

Y/ is the characteristic matrix for the /* layer, 77 is the complex refractive index (= «/+/£/), where 
H/ is the real refractive index and ki is the absorption coefficient. The phase factor, 5, is given by 
equation 4, 

0= —^-i—cos6l (4) 
A 

where A is the wavelength, x is the layer thickness, and 0/ is the interior angle of propagation in 
medium /. For normally incident light, cos 0/ =1. However, for tilted filters in which the incident 
angle is oblique, 

nn sin 9n cos0;=ll-^p> (5) 
nl 

where n0 is the refractive index of the incident medium (air), and 60 is the angle of incidence in 
radians. The characteristic matrix of the entire film stack (M) is determined by multiplying the 
matrices of individually layers, i.e.; 

M: : Ylayer 1 x Ylayer 2X"'X Ylayer I (6) 

Layer 1 is the layer that is closest to the substrate. Light transmitted through the film layers 
consists of an electric vector component, E, and a magnetic vector component, H • The 
characteristic matrix relates the electric and magnetic fields at individual layer boundaries in the 
following manner: 
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"F.1 r   i   ] 
= Mx 

H ns + iks 
(7) 

where ns and ks are the refractive index and absorption coefficient of the substrate respectively. 
The propagation of light through a single thin film coating is illustrated in Figure 1. As is shown 
in the diagram, there are multiple reflections of the incident light at the air/film and substrate/air 
interfaces. The transmittance and reflectance at the air/film interface, is given by equations 8 and 
9. 

T 
Ansn 

(8) 

R.=I-T, (9) 

For normally incident light, n=n0=\, where n is the refractive index; however, when the filter is 
tilted, the propagated wave is split into two plane-polarized components, one with the electric 
vector in the plane of incidence, known as p-polarized, and one with the electric vector normal to 
the plane of incidence, known as s-polarized. The refractive index of the incident light is 
therefore modified as follows: 

n = ■ -(p-polarization) 
cos60 

n-n0 cos 60 (s-polarization) 

(10) 

(11) 

T2   and R2 are related to the real and imaginary components of E and H  (i.e.. 1 

H 2 respectively) determined from equation 7. 

T, 
Ann 

(E.+H^ + ^+H,)2 

and H 

ii:> 

-   _(E,-H1)
2 + (E2-H2)

2 

2    (E^H^ + CE.+H,)2 (1?) 

The total transmittance through the film and substrate can be determined by surnriiini' up the 

infinite series of the combined reflectance and transmittance terms (see Figure 1 i i.e.. '[ f.,, 

T,T2R,R2, T,T2(R,R2)
2, T,T2(R,R2)

3, etc, which results in the following expression 
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T(x,x,Til,Ti„ec)=-¥k-*\oo (14) 
1 —K.jK-2 

where 771 and rjs are the complex refractive indices of layer /, and the substrate, s, respectively. 
For tilted filters, the average transmittance due to the p- and s-polarized components of the 
incident light is determined. 

2.2. Titled filter application for optical prediction 

In the optical computing approach to predicting sample properties or composition, a radiation 
source, filter, and detector is used to replace the traditional multiwavelength absorption or 
emission spectrometer. The combined spectral response of the filter instrument matches the 
spectral pattern of the desired shape of a multivariate regression factor from a PCR or PLS 
calibration. The signal produced at the detector is a product of the intensity of the incident beam 

as a function of wavelength, I, the transmission spectrum of the filter, f , and the sensitivity of 

the detector, Q, as a function of wavelength. By directing the multiwavelength light through the 
sample and then onto a single detector, a summation operation is effectively performed, giving a 
detector response proportional to the summed intensity of detected photons. One complication 
with this approach lies in the fact that multivariate regression vectors have negative and positive 
lobes, whereas, optical transmission spectra are nonnegative. In earlier reports, a solution to this 
problem was proposed by fabricating two filters, one representing the positive lobes of the 
multivariate regression vector, and the other representing the negative lobes of the multivariate 
regression vector (5, 6). The light from the two filters was then directed to two separate 
detectors. The resulting two signals were then subtracted by means of a simple difference 
amplifier circuit. 

With the new filter optimization procedure described below, it is possible to envision an 
alternative instrument configuration that utilizes a single tilted filter instead of two discrete 
filters, thereby reducing the complexity and cost of the device (see Figure 2). By using a filter 
tilted at an angle 45° to the plane of the incident beam, the incident beam is split into a reflected 

beam, R, and a transmitted beam, f, that are then directed to two different detectors. 
Assuming no light is absorbed by the filter, the transmitted radiation and reflected radiation from 
a filter tilted at 45° are related to one another by equation 15, 

R=l-T (15) 

A difference amplifier is then used to subtract the two signals, thereby achieving an output given 
by equation 16: 

yo = GxIxfxQ»S-GxfxRxQ»S (16) 
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where V0 is output voltage, G are amplifier gain constants, and S is the sample spectrum vector. 
Substituting equation 15 into equation 16 and simplifying gives the overall instrument response 
function: 

V0Mr = GxIxQx[2f-l].S + V0jer^ = GxL.S + V0J^gr (17) 

where L represents the spectral pattern produced by the tilted filter instrument. 

2.3 Nonlinear Optimization of Filter Layers 

The optimization of filter parameters is carried out in a manner that minimizes the root mean 

standard error of calibration (RMSEC) using a simulated filter transmission spectrum, f , at m 
discrete wavelength channels. In order to design the thickness of layers of a MOC filter on a 
digital computer, the tilted filter response function described in equation 17 is simulated. Using 
a set of digitized calibration spectra representative of real samples, the vector of concentration 
values, yt, of the calibration samples is predicted according to equation 18. 

9i = V0ut = G xl* %+ Vcffset (18) 

From the estimated concentration values of the calibration set, y. , RMSEC is calculated 

according to equation 19. 

RMSEC = i=\ 
m 

(19) 

The objective function optimized is simply the root mean squared error of calibration. The 
amplifier gain, offset, and thicknesses of the N-2 layers of the filter are the parameters adjusted 
during the optimization process. The minimum RMSEC of the optical filter approach can be 
visualized as a search on a complex //-dimensional response surface. The filter design algorithm 
created for this purpose is based on the quasi-Newton method of nonlinear optimization (12,13). 

Two variants of the filter optimization program were developed, differing from each other only 
in how the optimization starting point is initialized. In the both approaches, the filter design 
algorithm is initialized by specifying the number of layers, N-2, with predetermined thicknesses, 
zt, representing a single point on the response surface. At each iteration of the optimization 
process, curvature (gradient) information is built up to formulate a quadratic model problem of 
the form, 

IT        T 
min-z  Hz + c  z + b (20) 

r    2. 
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where z is the vector of N optimization parameters, the Hessian matrix, H, is a positive definite 
symmetric matrix (crucial in maintaining a constant descent down the slope of the search 
surface), c is a constant vector, and b is a constant. The optimization converges to a solution 
corresponding to the lowest value of the RMSEC when the partial derivatives of z go to zero, i.e., 

V/(z*) = Hz * +c = 0 (21) 

The optimal solution point, z*, can be written as 

z* = -H'c (22) 

At the starting point, H can be set up to any positive definite matrix (e.g. the identity matrix, I). 
The observed behavior of/(z) and V/[z) is then used to build up curvature information to make 
an approximation of H using the updating formula developed by Broyden (14), Fletcher (15), 
Goldfarb (16), and Shanno (17), also known as the BFGS formula. The formula is given by 

*+i - *** + -y ZTTTI— (23) 
qtq*  H[S[S,H 

als*      s[H,s, 
where 

s 
qjk = v/(zfc+i)-v/(zÄ) 

The gradient information is provided by perturbing each of the design variables (i.e. layer 
thicknesses) in turn and calculating the rate of change in the RMSEC. At each major iteration k, a 
line search is determined in a direction in which the solution is estimated to lie, and is 
determined by 

d = -H-'. /(z,) (24) 

During optimization, layers thicknesses that fall below a specified threshold value (ca. 0.5 nm) 
are not acceptable, keeping in mind that extremely thin layers do not contribute appreciably to 
the transmission curve of the filter and may not be conveniently deposited during the fabrication 
process. Therefore, in the event that a layer falls below this threshold value during optimization, 
the optimization processes is stopped, the offending layer is deleted, and the optimization re- 
started at the previous design point with one fewer layers. Other flags are activated to re-start the 
process whenever the optimization is stalled or the number of maximum iterations is reached. 

The starting point of the optimization routine is important since it can have a significant bearing 
on the final results. The descent towards an optimal value of RMSEC proceeds on the response 
surface through several possible pathways, depending on the starting point and the search 
direction. The choice of an appropriate starting point usually entails a fairly quick descent to a 
local minimum on the response surface. There are currently two variants to the filter design 
algorithm, both of which are based on different modes of initialization. In the first approach, one 
initializes the optimization process with a specified number of layers having random thicknesses 
uniformly distributed in the range from 1 to 100 nm.  For different random starts, the search 
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frequently proceeds to different local minima on the response surface, hence, different solutions. 
In this manner, many different solutions having useful predictive properties are found. In this 
approach, one typically starts with a large number of layers that will give a filter having a 
thickness near the upper practical limit. Since the algorithm automatically deletes layers that 
become negligibly thin during the optimization process, this approach is observed to produce 
filters having different numbers of layers, and thus regression vectors of differing levels of 
parsimony. 

In the second method of filter initialization, the optimization process starts with a specified 
number of layers having random thicknesses as before. Using the tilted filter model, a filter is 
designed using equations 25 and 26 (10) to match the filter's combined transmission and 
reflectance spectrum to an jV-factor principal component regression (PCR) vector at m digitized 
wavelengths, 

RPCR = L = [2T-1] (25) 

m 

F(x)=JJ(Ri,PCR-^)2 (26) 
i=l 

where RPCR is the regression vector, f is the filter's transmission spectrum, and L is the filter's 

combined transmission and reflection spectrum described in equation 17. The results of the PCR 
optimization step (e.g., layer thicknesses) are used as the initial starting point in the optimization 
of RMSEC, as described previously. 

3. EXPERIMENTAL 

Simulated data 

Simulated data was used during the development and testing of the filter design algorithms, since 
this provided ideal mixture spectra having precisely known characteristics. Two simulated pure 
component UV spectra were generated by summing scaled Gaussian bands to produce the pure 
component spectra shown in Figure 3. Mixture spectra were generated by adding components of 
the mixture together to construct a training set and validation set using a 3-level, 2-factor central 
composite experimental design shown in Table 1. Design points for the validation samples were 
selected at locations between calibration points in or exercise the calibration model's ability to 
interpolate. The resulting absorbance spectra were log transformed to produce transmission 
spectra. Scaled, normally distributed random numbers with a mean of zero and a standard 
deviation of 0.1 %T were added to the resulting transmission spectra to simulate measurement 
noise. The resulting training and validation set of transmission spectra were used to develop the 
filter design algorithms. 
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Experimental data 

A set of binary dye mixtures were prepared from two water soluble dyes obtained from Aldrich 
Chemical Company, Bismarck Brown (BB) (^^=457 nm, dye content 50 %) and Crystal Violet 
(CV) (Xmax=590 nm, ACS reagent dye content 95 %). Stock solutions in distilled water of BB at 
8.23x10"5 M and CV at 3.77xl0"5 M were prepared. Random numbers were generated and 
applied in diluting the stock solutions to ensure that the relative concentration of the two dyes 
were varied independently. The random numbers were also chosen to ensure that the 
transmittance spectra of the diluted mixtures were between 30 % and 70 %. In this manner, 40 
binary dye solutions were prepared in which the concentrations of the two dyes varied 
independently. Bismarck Brown was selected as the analyte because the spectrum of CV 
overlapped it at all wavelengths. CV was treated as an uncorrelated interferent whose 
concentration varied randomly. The transmittance spectra (Figure 4) were acquired between 400 
nm and 650 nm on a Hewlett-Packard UV-VIS diode array spectrometer (Model 8543). An 
instrument prototype for the implementation of multivariate optical computing using a single 
MOE, has already been described (7). The transmittance spectra were convolved with a bandpass 
filter transmission spectrum, the source lamp emission spectrum, and detector response function 
of the prototype field instrument to give an accurate representation of the detected response as a 
function of wavelength (Figure 5). The corrected spectra were used for MOE design and 
multivariate analysis. PCR and the MOE design algorithm were written in MATLAB 
(Mathworks Inc. Natick, MA). 

4. RESULTS AND DISCUSSION 

4.1 Estimation of figures of merit from PCR calibration 
The conventional approach to the multivariate analysis of optical spectra requires the use of 
bilinear regression techniques for the correlation of the spectral wavelengths to concentration (or 
any other property of interest). In particular, PCR is routinely used to define a regression vector 
or pattern, which correlates the wavelength channels to the concentration of the species of 
interest, but is orthogonal to interferences (4). The initial step in PCR analysis involves 
reduction in the dimension by use of the truncated singular value decomposition (SVD) of an n x 
m matrix of calibration spectra, X, where n is the number of spectra, and m is the number of 
wavelength channels or variables , 

X = UnXpSpxpVpxm (27) 

and p is the number of singular values retained in the truncated SVD. The resulting p factor 
PCA model is used to estimate a regression vector, r, that can be used for prediction, where p, 
the number or principal components, is selected to give adequate prediction properties to the 
regression model. 

VC/f = VpSp1uJy (28) 

y = x • rr (29) 
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A PCR calibration model was constructed for the simulated optical transmittance spectra in order 
to provide a baseline level of calibration performance for comparison with the optical regression 
technique. Examination of SEC and SEP revealed 3 factors gave an adequate calibration model 
(see Figure 6) (SEC = 0.0163, SEP = 0.0096). This error level corresponds to 1.6% and 0.96% 
error relative to the mean of the calibration set. A slight amount of curvature can be observed in 
the calibration curve due to the fact that the calibration model was developed using transmission 
spectra, which is necessitated by the nature of the tilted filter instrument. Here, a linear 3 factor 
PCR model achieves an acceptable approximation to the non-linear calibration problem. Since 
the validation points cover a narrower working range than the calibration standards, SEP is 
slightly lower than SEC. For comparison, an ideal two-factor PCR model developed from 
absorbance spectra instead of transmission spectra can be used to establish an approximate lower 
error bounds of SEC=0.00\9 and SEP=0.002l. The calibration developed using transmission 
spectra is slightly worse than the calibration model developed using absorption spectra, however, 
it still possess useful predictive properties. 

A four factor PCR calibration model was constructed for the BB-CV training sets of optical 
transmittance spectra. A plot of the root mean squared error of cross validation vs. number of 
principal components (Figure 7) shows that four principal components are required for optimum 
predictive ability. The standard error of calibration (SEQ was 0.0907 (iM, corresponding to 
1.0% error relative to the mean of the calibration set. The four-factor model was validated with 
the test set of optical spectra, and the standard error of prediction (SEP) was estimated to be 
0.2583 |lM, or 2.8% relative to the mean of the calibration set. A slight amount of curvature was 
also observed in this calibration curve for the reasons stated above. 

4.2 Estimation of the figures of merit for a conventional numerical filter design 

In a previous report (18), a filter design was synthesized by using the needle optimization 
technique to match a target transmission spectrum that was arbitrarily scaled from the 4-factor 
regression vector for the BB-CV data set. Here, the spectra] profile of the scaled regression 
vector is iteratively synthesized by minimizing the merit function, F (see Equation 1), which 
describes the difference between a calculated spectrum (based on the MOE layer thicknesses in 
each iteration), and a target spectrum (represented by the spectral profile of the scaled PCR 

vector). The regression vector was scaled according equation 30, where T is the target 

transmittance spectrum and R is the regression vector. 

f(%) = 50 + 1.85R (30) 

It is virtually impossible to exactly reproduce the target spectrum over a wide wavelength range, 
since the distribution of design tolerances (see Equation 1) are not likely to prevent spectral 
mismatch across all the wavelength channels. At best, a range of tolerances have to be selected 
that would minimize the deviation from the target for a portion of the spectrum relative to others. 
It is however possible to define a wavelength range over which the transmittance function of the 
MOE must be defined. Outside this operational bandpass, all values of transmittance for the 
MOE are permissible because the variance of the signal strength is so small that it has a 
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negligible impact on prediction. Determination of the operational bandpass limits has already 
been examined in a discussion of spectral tolerance for MOE design in reference 7. For the 
binary dye system, the effective bandpass was determined to be between 423 nm and 624 ran. By 

solving for R in equation 30, the calibration and prediction error from the spectrum resulting 
from the filter design was determined to be 0.4471 [iM and 0.4908 u\M respectively. 

Clearly, this approach to MOE synthesis degrades the calibration and prediction error of the 
designed filter. This development has necessitated a paradigm shift in terms of approaching the 
filter design problem. Instead of approaching the filter design in terms of matching the structure 
of a regression vector, a filter design that minimizes calibration error is even more desirable, 
considering that a further degradation in SEC is to be expected from likely manufacturing errors 
that would prevent the accurate deposition of filter layers as specified by a given design. 

4.3 Minimization of calibration error with random initialization of filter design algorithm 

In the first approach to designing optical computing filters, a filter design is initialized by a 
specified number of random filter coefficients (i.e. layers thicknesses). Using the simulated 
calibration spectra, an initial rapid convergence to the mean ^-value of the calibration set was 
observed, followed thereafter by a slow descent to a local minimum value of the sum of squared 
calibration error. It was observed that different random starts using the same number of starting 
layers will result in different filter designs. This suggests that the descent towards an optimal 
value of the sum of squared calibration error proceeds on a complex TV-dimensional response 
surface through several possible pathways, depending on the random starting point and best 
search direction. For different random starts, the search direction proceeded to different local 
minima on the response surface, hence the possibility of different solutions to the optimization 
problem. 

Table 2 shows 10 of the best filter designs obtained by systematically designing filters having 1 
to 31 initial layers of random thickness and 10 different trials per layer setting. Figure 8 shows 
the response curves of the 10 selected filters described in Table 2. The overall best filter had 15 
layers and gave SEC = 0.0070 and SEP = 0.0079, corresponding to 0.7% and 0.8% error relative 
to the mean of the calibration set. It is interesting to note that the performance of this optical 
filter calibration is better than the best PCR regression vector when transmission spectra are 
considered, as necessitated by the tilted filter instrument design. While the optical filters 
designed by non-linear optimization produced calibration curves that were substantially better, 
they were not as good as the results obtained in the ideal case, e.g., a two-factor PCR calibration 
with absorbance spectra. As before, a slight amount of curvature can be observed in the 
calibration curve due to the fact that the calibration model was developed using transmission 
spectra, and since the validation points cover a narrower working range compared to the 
calibration standards, SEP is slightly lower than SEC. 

A similar study was conducted for the BB-CV mixtures. Table 3 shows several random 
initializations for various filter designs based on the binary-dye data, along with the final filter 
parameters and the corresponding figures of merit (i.e. SEC and SEP). Figure 9 shows the 
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response curves of the various filter designs in Table 3. In this case the besl overall filter gave 
better predictions than a 4-factor PCR regression. 

4.4 Minimization of calibration error via initialization to PCR regression vector 

As described previously, the second approach to designing MOE filters involves an initial 
step in which filter parameters with random initial values are optimized to give response vectors 
that fairly approximate a PCR regression vector.   The optimized filter parameters obtained by 
matching the PCR vector are then used to initialize the filter design algorithm that searches for a 
minimum RMSEC. Typically, slow convergence to the shape of the PCR vector was observed, 
followed by a relatively fast "relaxation" to the final design vector. Table 4 shows 10 of the best 
filter designs obtained for the simulated data set by systematically designing filters having 1 to 
31 initial layers of random thickness and 1 to 3 factors in the initial PCR regression. Figure 10a 
compares a fitted optical regression vector with the target PCR vector for a two factor PCR 
calibration model using 22 layers.  As can be seen in this figure, the initial filter gives a good 
approximation to the shape of the PCR regression vector. Figure 10b shows the response curves 
of the 10 selected filters described in Table 4. As can be seen in Figure 10b, the final shape of 
the filter regression vectors have diverged significantly from the original PCR shape, such that 
they now match the general shape of the some of vectors shown in Figure 8. This suggests that 
the non-linear optimization strategy finds many different local minima that produce regression 
vectors having similar shapes. The overall best filter for this simulated data sets was initialized 
from a one factor PCR regression, had 22 layers, and gave SEC = 0.0095 and SEP = 0.0083, 
corresponding to 0.95% and 0.83% error relative to the mean of the calibration set.   The 
performance of this optical filter calibration is better than the best PCR regression vector when 
transmission spectra are considered, however, the best filter performed slightly worse than the 
best filter obtained using the random initialization method.   The main advantage of the PCR 
initialization approach for this data set was that less computational effort was required, so filters 
with useful predictive properties can be generated quickly during feasibility studies. As before, a 
slight amount of curvature can be observed in the calibration curve due to the fact that the 
calibration model was developed using transmission spectra, and since the validation points 
cover a narrower working range compared to the calibration standards, SEP is slightly lower than 
SEC. 

For the BB-CV data set, the optimization algorithm was initialized with a 25-layer filter with 
each layer thickness at 100 nm. The spectral profile of this intermediate design was used to 
initialize the filter design algorithm that minimizes RMSEC, producing a final design with 19 
layers whose spectrum is shown in Figure 11. Even though the calculated vectors turned out to 
be slightly different from each other, they are both relaxed to give identical final filter designs. 
This ensures that for a given number of starting random layers, the final design is always 
reproducible. 

The two filter design approaches described above often produced designs that do not resemble 
the PCR regression vector as shown in Figures 9 and 11. The PCR regression vector can be 
visualized as a point in p-factor space that describes a linear relationship between the analyte and 
the measurement variables (i.e. spectral wavelengths), that is orthogonal to interferents. Whereas 
there is only one such direction for a p-factor PCR calibration model, there are several paths to 
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the various local minima on the multi-dimensional response surface depending on the starting 
point of the optimization. Because the attainment of a global least squares minimum is difficult 
under these conditions, there is therefore the possibility of obtaining several solutions to the 
optimization problem, as is evident from the results obtained. 

5. CONCLUSION 

A fairly straightforward algorithm for the design of filter elements used for optical computing 
has been described and successfully demonstrated. The algorithm is used to design MOE filters 
with the good predictive ability for a chemical species of interest. Unlike design methods that are 
dependent on matching a fixed profile, this new algorithm provides multiple pathways through 
which various MOE designs are obtained, all of which strive to achieve a low SEC. Because of 
this, the algorithm also provides a means by which a particular filter design can be modified 
continuously during the fabrication process to correct for errors generated from the 
manufacturing process without seriously compromising the predictive ability of the MOE. The 
means by which this is implemented is the subject of future work. 
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Table captions 

1. Relative amounts of components 1 and 2 in simulated calibration and validation 
spectra. 

2. Performance characteristics of 10 best filters for the simulated calibration and 
validation data set using the random initialization method. 

3. Performance characteristics of 5 filters for the BB-CV data set using the random 
initialization method. 

4. Performance characteristics of 10 best filters for the simulated calibration and 
validation data sets using the PCR initialization method. 

Table 1 
Calibration set Validation set 

Std no. Comp. ' I Comp 2 Comp. 1 Comp 2 
1 0.8 0.8 0.9 0.9 
2 1.2 0.8 1.1 0.9 
3 0.8 1.2 0.9 1.1 
4 1.2 1.2 1.1 1.1 
5 1.0 1.0 1.0 1.0 
6 1.0 1.0 1.0 1.0 
7 1.0 1.0 1.0 1.0 
8 1.4 1.0 1.3 1.0 
9 0.6 1.0 0.7 1.0 
10 1.0 1.4 1.0 1.3 
11 1.0 0.6 1.0 0.7 

Table 2: 
No. initial No. final 

layers SEC SEP RMS avg layers 
29 0.00950 0.00792 0.00875 27 
28 0.00924 0.00802 0.00865 26 
19 0.00923 0.00796 0.00862 17 
29 0.00841 0.00875 0.00858 29 
20 0.00885 0.00822 0.00854 14 
30 0.00919 0.00782 0.00853 30 
21 0.00909 0.00784 0.00849 21 
20 0.00879 0.00794 0.00838 20 
25 0.00728 0.00846 0.00789 23 
15 0.00699 0.00794 0.00748 15 
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Table 3: 

No. initial No. final 
layers      SEC (jiM) SEP (jiM)   RMS error      layers 

15 0.2587 0.4151 0.3459 15 
20 0.2546 0.4025 0.3368 20 
25 0.251 0.4026 0.3355 19 
30 0.2435 0.3782 0.3181 24 
35 0.2574 0.4167 0.3463 35 

Table 4: 
No. initial No. final 

No. factors layers SEC SEP RMS error layers 
2 22 0.01164 0.00808 0.01002 16 
2 26 0.01143 0.00837 0.01002 22 
1 21 0.01134 0.00827 0.00992 15 
1 29 0.01134 0.00797 0.00980 25 
1 22 0.01103 0.00802 0.00964 18 
1 27 0.0108 0.00796 0.00949 27 
2 30 0.01051 0.00807 0.00937 26 
2 31 0.01051 0.00807 0.00937 26 
2 23 0.01036 0.00803 0.00927 19 
1 28 0.00952 0.00827 0.00892 2? 
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10.10 DESIGN OF ANGLE-TOLERANT MULTIVARIATE OPTICAL ELEMENTS 
OF CHEMICAL IMAGING 

I 
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Design of Angle-Tolerant Multivariate Optical 
Elements for Chemical Imaging 

O.O. Soyemi1, P.J. Gemperline2, M.L. Myrick1*. 

'Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208. 
"Department of Chemistry, East Carolina University, Greenville, NC 27858. 

Multivariate optical elements (MOEs) are multilayer optical interference coatings with 

arbitrary spectral profiles that are used in multivariate pattern recognition to perform the 

task of projecting magnitudes of special basis functions ("regression vectors") out of 

optical spectra.   Because MOEs depend on optical interference effects, their performance 

is very sensitive to the angle of incidence of incident light.   This angle dependence 

frustrates their simple use in imaging applications. We report a method for the design of 

angle-insensitive MOEs based on modification of a previously described nonlinear 

optimization algorithm.   This algorithm operates by simulating the effects of deviant 

angles of incidence prior to optimization, treating the angular deviation as an 

"interferent" in the measurement.   In demonstrating the algorithm, a 13-layer imaging 

MOE (IMOE, with alternating layers of high index Nb205 and low index Si02) for the 

determination of Bismarck Brown dye in mixtures of Bismarck Brown and Crystal 

Violet, was designed and its performance simulated. For angles of incidence that range 

from 42° to 48°, the IMOE has an average standard error of prediction (SEP) of 0.55|iM 

for Bismarck Brown. This compares to a SEP of 2.8 uM for a MOE designed by a fixed- 

angle algorithm. 

© 2001 Optical Society of America 

Author to whom correspondence should be addressed. Telephone: 803-777-6018. Fax: 803-777-9521. 
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INTRODUCTION 

Optical spectroscopy coupled with multivariate mathematics is routinely used in 

analytical chemistry for species quantification and chemical/biomedical imaging. 

However, the widespread application of this type of analytical spectroscopy has been 

limited by heavy reliance on bulky and expensive multichannel instruments, as well as 

the need for fast computing technology to process the vast amounts of multivariate data 

that are generated (1). In 1986, Bialkowski proposed that optical filters could be designed 

to aid in this process (2), an idea refined by Ryabenko in 1991 (AA) and our laboratory in 

1998 (BB). In each of these studies, the use of an optical interference filter to project a 

spectral pattern out from collimated multiwavelength light was proposed, a simple form 

of optical computing. Recent reports of optical regression studies using conventional 

acousto-optical tunable spectrometer systems show the potential for such multivariate 

optical computing methods as supplements to, or replacements for, conventional 

spectrometer systems (Booksh,CC). 

Our laboratory recently demonstrated this promise by designing, fabricating and 

characterizing the performance of an optical interference filter for a chemical 

measurement (4). These interference filters, which we refer to as multivariate optical 

elements or MOEs, permit the estimation of chemical properties based on the 

measurement of a spectral pattern. While conventional spectroscopy is still needed to 

characterize samples so that a suitable spectral pattern on which to base an analytical 

measurement can be found, MOEs permit the magnitude of these spectral patterns to be 

measured without the necessity of recording spectra for unknown samples. 
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A further application for MOEs is as color-separation-type elements in imaging systems. 

Hypothetically, an MOE can be designed to provide immediate imaging of chemical 

distributions. For instance, if light from a scene (the "source scene") transmitted through 

an MOE were imaged and mapped to the red channel of an RGB display, while the 

reflectance were imaged and mapped to the green and blue channels of the same display, 

the resulting image should contain an implicit color-coding of the MOE projection of the 

light source. However, this relatively simple concept is complicated by the angular 

distribution of light inherent in imaging systems. 

In the demonstration of reference 4, a pinhole was used to define an approximate point 

source of light so ■ that nearly collimated light could be used. MOEs, like other 

interference filters, have transmission spectra that are strongly angle-dependent. Since 

the transmission/reflection spectra of the MOE are key to its operation, a change of angle 

will deleteriously affect the chemical analysis performance of the MOE. Light that is 

incident on the MOE with an angular distribution will likewise degrade its performance. 

In the present report, we describe a means for designing MOEs that are less sensitive to 

the angular distribution of light from a source scene. In this approach, imaging MOEs 

(IMOEs) are designed by simulating the effects of an angular distribution of light from 

the source scene. Iterative design of the IMOE then treats the angular distribution as an 

"interferent", a factor in the measurement that obscures the desired spectral content of the 

source scene, similar to the treatment of chemical species whose spectra overlap with and 

obscure the spectra of a chemical species of interest. The standard error of calibration for 

the IMOE is used as a figure of merit to be minimized by iterative solving, resulting in an 
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IMOE that minimizes both the contributions of chemical interferents and angular 

distribution of light in the source scene. 

To illustrate this approach to IMOE design, we return to data from reference 4 for the 

measurement of the dye bismarck brown in a random mixed solution with the dye crystal 

violet (CV). The concentration of bismarck brown (BB) varied in the samples in the 

range 0-18 uM. We assume unpolarized light from the source scene and an angle of 

incidence of 45 ± 3 degrees. An MOE derived from a fixed-angle design algorithm 

resulted in a SEP of 2.8 uM when employed in this simulated imaging application. For 

comparison, a MOE designed by the distributed-angle algorithm resulted in a 0.55 uM 

SEP. 

EXPERIMENTAL 

The binary dye (bismarck brown-BB, and crystal violet-CV) data used in this study have 

previously been described (4). In brief, optical transmission spectra of the dye mixture 

from 400 nm to 650 nm were convolved with the spectral characteristics of the lamp 

source, the filter bandpass, and the detector, to provide an estimate of the radiometric 

response of a prototype measurement system as a function of wavelength. The MOE 

design algorithm was written in the MATLAB programming language (version 6). 

RESULTS AND DISCUSSION 

Multivariate Spectroscopy  In brief, conventional multivariate spectroscopy is used in 

analytical chemistry by finding multiwavelength patterns that correlate with chemical 
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analyses (e.g., octane ratings) of a set of calibration samples (e.g., gasolines). Once 

found, new (unknown) samples of the same type (gasolines) are analyzed by determining 

the magnitude of this pattern in the spectra of the unknowns. The magnitude of the 

pattern is evaluated by multiplying the intensity of the spectrum at each wavelength by 

the "loading" of the pattern at the same wavelength, and then summing the result over all 

wavelengths. This is illustrated symbolically in Equation 1 below: 

where l(A,j) is the loading of the pattern at wavelength j, Xj(Xj) is the intensity of the 

spectrum of the ith mixture at wavelength j, y; is the chemical analysis result, and j is an 

index that runs over all the N wavelengths of the spectrum. 

Prediction of a desired property of an unknown is carried out by determining the 

magnitude of the spectral pattern in the optical spectrum of the sample. More 

specifically, the magnitude is calculated by taking the inner product of the regression 

vector and the optical spectrum of the unknown sample. 

MOEs. MOEs make chemical predictions by effecting an optical computation cqim alent 

to equation 1. As Figure 1 illustrates, MOEs are used as optical beamsplitter- They are 

designed so that their transmittance (on a scale of 0 to 1) at wavdein-th i can he 

expressed as: 

2. TfAjj^O-S + klfAj) 

where k is a proportionality constant that is the same for all wavelengths. In the event 

that the MOE is free of absorption, the sum of the reflectance and transmittance of the 
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filter is unity at each wavelength, giving equation 3 for reflectance at the same 

wavelength. 

3. RfAj^O-S-klfAj) 

Light coming from a sample at wavelength j with intensity Xj(A.j) is partially reflected by 

the MOE. If light from the sample at all N wavelengths strikes the MOE, then the total 

intensity of reflected light for sample i, Rt]; is a sum over N as shown in Equation 4. 

4.        R,i=X(0.5-kl(Aj))xi(Aj) = 0.55;xi(Aj)-kXl(Aj)xi(Aj) 
j=i j=i j=i 

The corresponding equation for the total transmitted light is given in equation 5: 

5.        Tu=0.5Xx,(Aj) + kil(Aj)x1(AJ) 
j=i j=i 

If the magnitude of these two total intensities is measured with a corrected detector, the 

difference between the two is: 

6. (Tt,,-Rlii) = 2kXl(Aj)xi(Aj) = 2kyi 
j=i 

In other words, the difference between the transmittance and reflectance of an MOE, 

when detected with a corrected detector, is directly proportional to the chemical (or 

physical) property for which the regression pattern was developed. In practice, the 

spectral efficiency of the detector(s) is convoluted with the optical spectra prior to 

development of a regression pattern so that uncorrected detectors can be used on all N 

wavelengths in parallel. 

IMOE Devices: The proposed schematic for a T-format IMOE-based imaging device is 

shown in Figure 2A. IMOE imaging is a straightforward extension from the discussion 
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of fixed-angle MOEs above, treating each set of matched pixels (of which one set is 

illustrated in the Figure) in the image detectors (CCD1 and CCD2) as matched point 

detectors. 

If the spectral pattern of the MOE is designed with no offset (i.e., as shown in equation 

6), then when the analytical result is zero, the transmittance and reflectance of the MOE 

are equal.   When the MOE analytical result is nonzero, the reflectance and transmittance 

are unequal. Thus, if the transmitted image is mapped to (for example) the red channel 

while the reflected image is mapped to the green and blue channels of an RGB display, 

all channels should have the same intensity where the analytical result is zero.   If an 

offset is included, then an offset to either the red or green/blue channels is necessary. 

The image displayed will therefore appear in pure grayscale where the analytical result is 

zero, presuming the display to be balanced appropriately. Where the analytical result is 

nonzero, either the red or green/blue channels will dominate. The degree to which one or 

the other dominates would be determined by the analytical result.  Thus, the displayed 

image would appear as a grayscale image with an implicit colorcode that reveals the 

spatial distribution of the analytical result in its intensity and color.  A complete MOC 

digital image is obtained without the benefit of the extensive investment in calculation 

time typical of conventional chemical imaging techniques (1). 

Unfortunately, as comparison of Figures 1 and 2 shows, normal MOEs are designed for 

fixed angles of incidence - usually 45 degrees. IMOEs are required to function 

accurately at all angles around the centerline of the optical system up to the extremes 

defined by the field of view of the system. As Figure 2 illustrates, the IMOE is stationed 

forward of the lenses of the cameras to restrict the angles of incidence to a minimum 
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range.   In the event of short working distances, a front lens would be necessary to 

accomplish this. 

Design of Angle-Insensitive IMOEs: The design algorithm for MOEs in which radiation 

emanating from the sample is incident on the MOE at one angle has already been 

described (17). We refer to the algorithm as "spectral vector relaxation", or SVR, since it 

begins with a specific MOE spectrum and adjusts it to best fit the calibrated spectral data. 

The SVR design algorithm uses the quasi-Newton nonlinear optimization technique (18) 

to calculate an N-layer MOE whose spectrum \results in low analysis error for the 

chemical species of interest. The objective function (f(x)) to be minimized is the root 

mean squared error of calibration (RMSEC), and it is given by: 

7. f(x)= RMSEC = P^(y'    ^ 

where s is the number of calibration samples, and y; and yi axe the known and estimated 

concentrations for the i* sample respectively. At each iteration of the optimization 

process, the layer thicknesses (plus a scale and offset value) are adjusted to give a 

spectral vector from which j, and subsequently f(x) are calculated. The KMSf (.' is 

typically calculated from a spectral vector that is evaluated at an angle of meulencc of 

45°. By replacing the RMSEC with an objective function that describes the mean 

RMSEC (i.e.RMSEC) evaluated from several spectral vectors represent me \arums 

angles of incidence, it is possible to design an MOE whose performance is relamelv 

insensitive to spectral shifts that result from these angles of incidence. For each value (o) 
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of the angle of incidence relative to 45 degrees, the concentration estimate for the ith 

sample (yjS) is evaluated as: 

8- yi.* = *i%[2T(l),-l] + off 

where T(X)6 is the transmittance of the MOE as a function of the wavelength, A,, and the 

angle of incidence 6, and m is the number of digitized wavelengths in the spectrum. 

RMSEC is determined for all values of 8. 

Performance Simulation. Using the response profiles of 25 calibration sample mixtures 

of BB and CV, an IMOE was designed for BB analysis using angles of incidence in the 

range of 42° to 48°.    The design of the IMOE is shown in Table I; it consists of 13 

alternating layers of niobium pentoxide (Nb2Os) and silicon dioxide (SiÜ2) on a BK-7 

glass substrate, and is shown in Table 1. Other materials are also suitable for this design 

process. ND2O5 and S1O2 were selected because they are both produced in our laboratory 

and accurate optical constants for the materials produced in our deposition apparatus (a 

reactive sputtering system) have been measured via spectroscopic ellipsometry. The shift 

in the IMOE spectrum as the angle of incidence is varied from 42° to 48° is shown in 

Figure 3. The same calibration samples were utilized in the design of a 15-layer MOE 

using the conventional SVR algorithm at a 45° angle of incidence. For both designs, an 

optimal standard error of prediction (SEP) was calculated from 15 validation samples that 

were not included in the MOE/IMOE design process. The SEP is a measure of how well 

a MOE can predict future samples. It is defined by equation 9 below. 
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9. SEP: 

In equation 9, p is the number of validation samples, y, val and y: va] are the true and 

estimated values of the test sample concentrations respectively. A plot of the SEP for 

both MOEs versus angle of incidence clearly shows that the SEP for the modified SVR 

algorithm is relatively constant within the range of incident angles selected (Figure 4). On 

the other hand, the predictive performance of the MOE designed with the fixed-angle 

SVR algorithm sharply degrades when the angle of incidence is varied by even ±1. 

The optimum SEP for the MOE designed with the fixed-angle SVR algorithm at 45° 

(0.4jxM), is better than the average SEP for the MOE designed using the modified SVR 

algorithm (0.55|iM). However, the loss in average predictive ability is more 

compensated by the robustness of the IMOE over multiple angles of incidence. Even 

slight variations (less than 1°) in the angle of incidence for a fixed-angle MOE may 

severely compromise its performance. 

The rationale behind the ability to design angle-invariant IMOEs is as follows. As Figure 

3 illustrates, the first-order effect of a change in the angle of incidence is to shift the 

IMOE spectrum to longer or shorter wavelength. Spectra can be represented by vectors 

in m-dimensional space, where m is the number of wavelengths in the spectrum. The 

IMOE spectrum can likewise be visualized as a vector in such a space. A shift of the 

IMOE spectrum to longer or shorter wavelengths corresponds to a rotation of the IMOE 

vector in this hyperspace around an axis defined by a vector of ones. 
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This picture of an IMOE vector is represented in three dimensions in Figure 5. In this 

Figure, the spectrum of an interferent is shown by the vector b. The interferent spectrum 

would have no projection on any of the vectors lying in the plane normal to b, and thus 

vectors in this plane would be candidates for the analysis of a chemical analyte, a, in the 

presence of b. For a two component mixture with an analyte vector that is not coincident 

with b, each of the vectors in the plane normal to b (the plane of the white ellipse in 

Figure 5) would work for the measurement of the analyte vector, a. The sole exceptions 

to this statement would be the two vectors in the plane that are orthogonal to both 

vectors. The remaining vectors in the plane would, of course, show different qualities of 

performance, depending on their overlap with the analyte vector, a. 

The projection of a vector of ones onto the plane normal to the interferent vector 

represents an IMOE whose cone of rotation with varying angle of incidence is tangent to 

this plane. Such an IMOE is least subject to increased interference upon a change in the 

angle of incidence. The overlap of the IMOE vector with the analyte vector, a, may 

change when this occurs, thus changing the instrument gain for different angles of 

incidence. This effect will generally result in an "average" gain for a given range of 

angles of incidence. For a significant range of angles, the optimum IMOE spectrum 

would be one whose cone is not exactly tangent to the plane normal to the interferent, but 

which passes through the plane at two angles of incidence. This effect is observed in the 

results of Figure 4, where the SEP for 45° angle of incidence is a local maximum, with 

minima to either side corresponding to the angles at which the IMOE vector passes 

through a plane orthogonal to the spectral vector of the interference, CV. 
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CONCLUSIONS 

We have described an algorithm enabling the design of IMOEs for multiwavelength 

operation by modeling of the angle-dependence of the IMOE spectrum during the design 

process. This opens the path toward chemical imaging systems based on the multivariate 

optical computing concept. 

Chemical imaging devices that are based on simple optical computing elements may be a 

powerful yet simple alternative to current chemical imaging technology in certain 

applications. These devices promise substantially smaller, lighter instruments for 

imaging. In addition, the total absence of spectrometers and complicated data analysis 

could potentially extend imaging technology to everyday, non-specialist applications. 
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Layer No. Material Layer Thickness (run) 
1 Nb205 97.76 
2 Si02 68.87 
3 Nb205 94.50 
4 Si02 66.80 
5 Nb205 57.72 
6 Si02 49.04 
7 Nb205 60.75 
8 Si02 31.66 
9 Nb205 90.12 
10 Si02 22.29 
11 Nb205 112.03 
12 Si02 133.39 
13 Nb205 81.59 

Table 1. 13-Layer polarization insensitive MOE design for the determination of Bismarck 
Brown in a Binary Mixture with Crystal Violet 
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LIST OF ORGANOPHOSPHORUS COMPOUNDS WHOSE 
SPECTRA HAVE BEEN MEASURED AT THE USC LABORATORY 

Compound MIR NIR Raman 

Sand/white quart2 (NIR) X 
Methylphosphonic acid (NIR) X X 

Dimethylmethvlphosphonate X X X 

Methamidophos X X 
Trimetylphosphate X X X 

Dichlorvos X X X 

Hexamethylphosphoric triamide X X X 
Pinacolyl methylphosphonate X X X 

Dimethoate (NIR) X X 

Dylox (NIR) X X 
Dibrom X X 
Phorate X X X 
Prophos X X X 

Demeton 0 & S X X 
Disulfoton X X X 
Dyfonate X X 

Monocrotophos X X X 
Phosdrm X X X 

Dicrotophos X X X 
Terbufos X X 

Zinophos (NIR) X 
Fenchlorphos (NIR) X X 

Methylparathion (NIR) X X 
Tetraethylpyrophosphate X X 

Tetraethyldithiopyrophosphate X X 
Tributylphosphorotrithioate X X x 

Trichloronate X x          i 
Carbophenothion X X X 

Chlorpyrifos (NIR) X X 
Fensulfothion X X 

Parathion X X X 
Phosphamidon X X X 

Sulprofos (NIR) X X 
Diazinon X X 

Ethion X X X 
Famphur (NIR) X X 
Guthion (NIR) X 
Imidan (NIR) X X 

Malathion X X X 
Tetrachlorvinphos (NIR) X X 

Chlorfenvinphos X X 
Leptophos (NIR) X X 

Crotoxyphos X X 
EPN (NIR) X X 

Guthion ethyl (NIR) X X 
Coumaphos (NIR) X X 

Dioxathion X X X 
Sulfometuron methyl (NIR) X X 

Fenthion X 
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